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Inequalities of General Convex
Functions and Applications

Milan R. Tasković

Abstract. This paper presents very characteristic illustrations of transver-
sal sets (as upper, lower and middle) via general convex functions. Since
the general convex functions are defined by a functional inequality, it
is not surprising that this notation will lead to a number od impor-
tant inequalities. This fact is connected de facto with the notation of
transversal sets.

1. General J-convex functions

In this section we continue the study of the general J-convex functions, which are
introduced in the former paper by Ta s k o v i ć: Mat. Japonica, 37 (1992), 367-372. We
prove that if D ⊂ Rn a convex and open set, and if f : D → R is a general J-inner function
with the property of local oscillation in D, then it is continuous in D.

Since every J-convex function (also an additive function) is general J-inner function,
we obtain as a particular case of the preceding statement the result of F. B e r n s t e i n
and G. D o e t s c h.

1.1. Introduction and history. Let D ⊂ Rn be a convex and open set.
A function f : D → R is called J-convex (or Jensen convex) if it satisfies
Jensen’s functional inequality

f

(
x+ y

2

)
≤ f(x) + f(y)

2
(J)

for all x, y ∈ D. If the inequality in (J) for x 6= y is sharp, f is called strictly
J-convex. These functions were introduced (for n = 1) by J. W. Jensen in
1906, although functions satisfying similar conditions were already treated
by Hadamard, Hermite, Hölder and Stolz.1

1Historical facts. The recognition of J-convex functions as a class of functions to
be studied is generally traced to J e n s e n, but as is usually the case, earlier work can
be cited that anticipated what was to come. H ö l d e r proved that if f ′′(x) > 0, then
f satisfied what later came to be known as Jensen’s inequality. S t o l z proved that if
f is continuous on [a, b] and satisfies: (J), then f has left and right derivatives at each
point of (a, b). H a d a m a r d obtained a basic integral inequality for functions having
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Basic properties of J-convex functions in the one-dimensional case were
proved by Jensen himself and by Bernstein-Doetsch in 1915. Generalizatios
to higher dimensions were made by Blumberg and Mohr.

Fréchet in 1913 has proved that a measurable function which satisfies the
following Cauchy’s functional equation of addivity

f(x+ y) = f(x) + f(y)(Ca)

is continuous. Sierpiński in 1920 has proved that a measurable J-convex
function is also continuous.2

Various other proofs of the preceding statements were then supplied by
Banach, Kac, Alexiewicz-Orlicz, Kuczma-Smital, Paganoni, Fisher-Slodowski,
Figiel, S. Kurepa, Seneta and Steinhaus.

Ostrowski in 1923 has proved the statement according to which a J-convex
function bounded on a set of the positive measure is continuous.

In the present section we prove some analogous statements of the preced-
ing type for general J-convex (inner) functions.

In our former paper, Tasković in 1992, has introduced the notion of general
J-convex functions. A function f : D → R, where R denotes the real line
and D is a convex subset of Rn, is said to be general J-convex if there is
a function g : f(D)2 → R such that

f

(
x+ y

2

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
(M)

for all x, y ∈ D. We notice that the set of all J-convex functions can be a
proper subset of the set of all general J-convex functions.

On the other hand, recall that a function f : D → R is said to be general
J-concave if there is a function d : f(D)2 → R such that

min
{
f(x), f(y), d

(
f(x), f(y)

)}
≤ f

(
x+ y

2

)
(N)

for all x, y ∈ D. If f : D → R is general J-convex and a general J-concave
function, then f is a general J-inner function.

an increasing derivative on [a, b] in the following form as

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
;

among the rest J e n s e n used (J) to define convex functions and gave the first in a long
series of results which together with (J) imply the continuity of f .

2Additive functions. A function f : Rn → R (for a fixed n ∈ N) is called additive
iff it satisfies Cauchy’s functional equation in the form (Ca) for all x, y ∈ Rn. For n = 1
equation (Ca) was first treated in 1791 by A. M. L e g e n d r e and in 1809 C. F. G a u s s,
but A.L. C a u c h y in 1821 first found its general continuous solution, and the equation
has been named after him. Additional functions with infinite values were considered by
H a l p e r i n [1948]. Concerning equation (Ca) and the vast literature of the subject, cf.
also A c z é l [1966].
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We notice that the set of all J-convex and J-concave functions can be a
proper subset of the set of all general J-inner functions.

1.2. Local boundedness of general J-inner functions. Let D ⊂ Rn. A
function f : D → R is called locally bounded (locally bounded above,
locally bounded below) at a point x0 ∈ D if there exists a neighborhood
U ⊂ D of x0 such that the function f is bounded (bounded above, bounded
below) on U . We start with the following statements from Tasković in 1995.

Lemma 1. Let D ⊂ Rn be a convex and open set, and let f : D → R be a
general J-convex function for some bounded above function g : f(D)2 → R.
If f is locally bounded above at a point x0 ∈ D, then it is locally bounded
above at every point x ∈ D.

A brief proof of this statement may be found at Tasković in 1995. We
notice that when considered dually and analogously to the preceding Lemma
1, we obtain directly the following statement.

Lemma 2. (Dually of Lemma 1). Let D ⊂ Rn be a convex and open set,
and let f : D → R be a general J-concave function for some bounded below
function g : f(D)2 → R. If f is locally bounded below at a point x0 ∈ D,
then it is locally bounded below at every point x ∈ D.

Thus, when we combine two preceding lemmas, we directly obtain the
following statement for general J-inner functions.

Theorem 1. Let D ⊂ Rn be a convex and open set, and let f : D → R be
a general J-inner function for some bounded function g : f(D)2 → R. If f is
locally bounded at a point x0 ∈ D, then it is locally bounded at every point
x ∈ D.

A brief proof of this statement may be found at Tasković in 1995. Since J-
convex functions have support lines, thus, we notice that J-convex functions
are, de facto, general J-inner functions. Thus we obtain directly the following
statement.

Corollary 1. Let D ⊂ Rn be a convex and open set, and let f : D → R be
a Jconvex function. If f is locally bounded above at a point x0 ∈ D, then it
is locally bounded at every point x ∈ D.

1.3. Inequalities of general J-convexity. We begin with the following
essential statements.

Theorem 2. Let D ⊂ Rn be a convex and open set. If f : D → R is a
general J-convex function, then there is a function g : f(D)n → R such that

f

(
x1 + · · ·+ xn

n

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
(Da)

for every n ∈ N and for every x1, . . . , xn ∈ D. Equality holds in (Da) if and
only if x := x1 = · · · = xn and f(x) = g(f(x), . . . , f(x)).
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Induction shows that this statement holds. As an immediate consequence
of Theorem 2 we obtain the following statement.

Theorem 2a. Let D ⊂ {Rn be a convex and open set. If f : D → R is a
general J-convex function, then there is a function g : f(D)2 → R such that.

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
(Q)

for every x, y ∈ D and for every λ ∈ Q ∩ [0, 1], where Q denotes the set of
rational numbers.

We notice, if f : D → R is general J-convex and continuous, then (Q)
holds for all real λ ∈ [0, 1].

Next, we give an interesting inequality for general J-convex functions
which is, in some sense, the best of its kind.

Theorem 3. Let D ⊂ Rn be a convex set and let F ⊂ R be a field. If a
function f : D → R ∪ {−∞} satisfies (Q) for every λ ∈ F ∩ [0, 1], then

f

(
n∑
k=1

λkxk

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
(DN)

for some function g : f(D)n → R, for every n ∈ N, for arbitrary λ1, . . . , λn ∈
F ∩ [0, 1] such that λ1 + · · ·+ λn = 1 and for all x1, . . . , xn ∈ D.

Thus inequality (DN) with arbitrary x1, . . . , xn ∈ D is valid for every
general J-convex function f : D → R with arbitrary λ1, . . . , λn ∈ Q ∩ [0, 1],
adding up to 1, and for every continuous general J-convex function f : D →
R with arbitrary λ1, . . . , λn ∈ [0, 1] adding up to 1.

In connection with the preceding facts and Theorem 3 we have the fol-
lowing statement as an analytic phenomenon.

Theorem 4. (Necessity of inequality (DN)). Let D ∪ {0} ⊂ Rn be a convex
set and let F ⊂ R be a field. If f : D∪{0} → R∪{−∞} for some 2 ≤ ρ ≤ n
and for all λ1, . . . , λρ ∈ F ∩ [0, 1] with the properties λ1 + · · ·+ λρ = 1 and

f

(
ρ∑
i=1

λixi

)
≤ max

{
f(x1), . . . , f(xρ), g

(
f(x1), . . . , f(xρ)

)}
(Dρ)

for a function g : f(D ∪ {0})ρ → R and for all points x1, . . . , xρ ∈ D, then
f is a general J-convex function.

An illustration. A function f : D → R, where R denotes the real line and D is a convex
subset of Rn, is said to be ψ(J)-convex function if there is a function ψ : R0

+ → R0
+

such that ψ(0) = 0 and

f
(x+ y

2

)
≤ f(x) + f(y)

2
+

1

2
ψ
(
‖x− y‖

)
for all points x, y ∈ D. Next, we give an inequality for this special subclass of the class of
general J-convex functions.
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Proposition 1 (Tasković, [2001, p. 331]). Let D ⊂ Rn be a convex and open
set. If f : D → R is a ψ(J)-convex function, then the following inequality
holds in the form as

f

(
x1 + · · ·+ xn

n

)
≤ 1

n

n∑
i=1

f(xi) +
1

n

∑
i<j≤n

ψ
(
‖xi − xj‖

)
,(T)

for every n ∈ N and for all points x1, . . . , xn ∈ D. Equality holds in (T) if
and only if x1 = x2 = · · · = xn.

In connection with the preceding, a function f : D → R, where D is a convex subset of
Rn, is said to be general ψ(J)-convex function if there exist a function g : f(D)2 → R
and an increasing function ψ : R0

+ → R0
+ such that ψ(0) = 0 and

f
(x+ y

2

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
+ ψ

(
‖x− y‖

)
for all points x, y ∈ D. Next, we give an inequality for this special subclass of the class of
general J-convex functions.

Proposition 2 (Tasković, [2001, p. 333]). Let D ⊂ Rn be a convex and
open set. If f : D → R is a general ψ(J)-convex function, then there is a
function g : f(D)n → R such that

f

(
x1 + · · ·+ xn

n

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
+

+
1

n

n∑
i=1

ψ

(∥∥∥∥∥xi − 1

n

n∑
i=1

xi

∥∥∥∥∥
)(B)

for every n ∈ N and for all points x1, . . . , xn ∈ D. Equality holds in (B) if
and only if x := x1 = · · · = xn and f(x) = g(f(x), . . . , f(x)).

On the other hand, for the class of general ψ(J)-convex functions the
following statement holds, also.

Proposition 3 (Tasković, [2001]). Let D ⊂ Rn be a convex and open set.
If f : D → R is a general ψ(J)-convex function, then there exist a function
g : f(D)2 → R and a function ψ : R0

+ → R0
+ satisfying ψ(0) = 0 such that

f
(
f(λx+ (1− λ)y

)
) ≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
+ max{λ, 1− λ}ψ

(
‖x− y‖

)(A)

for every λ ∈ Q ∩ [0, 1] and for all points x, y ∈ D. Equality in (A) holds if
and only if x = y and f(x) = g(f(x), f(x)).

Next, we give an interesting inequality for general ψ(J)-convex functions
which is, in some sense, the best of its kind.

Proposition 4 (Tasković, [2001]). Let D ⊂ Rn be a convex set and let F ⊂ R be a field.
If f : D → R ∪ {−∞} satisfies (A) for every λ ∈ F ∩ [0, 1], then there is a function
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g : f(D)n → R such that

f

(
n∑
i=1

λixi

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
+

+
∑
i<j≤n

max{λi, λj}ψ
(
‖xi − xj‖

)(R)

for every n ∈ N, for all points x1, . . . , xn ∈ D and for arbitrary numbers λ1, . . . , λn ∈
F ∩ [0, 1] such that λ1 + · · ·+ λn = 1.

Hence inequality (R) with arbitrary x1, . . . , xn ∈ D is valid for every
general ψ(J)-convex function f : D → R with arbitrary λ1, . . . , λn ∈ Q ∩
[0, 1], adding up to 1, and for every continuous general ψ(J)-convex function
f : D → R with arbitrary λ1, . . . , λn ∈ [0, 1] adding up to 1.
Some illustrations. We notice, G o d u n o v a-L e v i n [1985] introduced the following
class of functions. A function f : D → R0

+, where D is a convex subset of Rn, is said to
be GL-convex function if it satisfies inequality

f(λx+ (1− λ)y) ≤ f(x)

λ
+

f(y)

1− λ(G)

for all points x, y ∈ D and for arbitrary λ ∈ (0, 1). (Clearly, nonnegative monotonic and
nonnegative convex functions belong to class of GL-functions.)

In the preceding context, by P o l z a k [1966], a function f : D → R, where D is a
convex subset of Rn, is said to be α(J)-convex function if there is an α ∈ R such that

f
(x+ y

2

)
≤ f(x) + f(y)

2
+
α

4
‖x− y‖2

for all points x, y ∈ D. If α > 0, then f is a weakly α(J)-convex function; and if
α < 0, then f is a strongly α(J)-convex function.

For further facts on α(J)-convex functions see: P o l z a k [1966], L e v i t a n-P o l z a k
[1966], and L y u b i c h-M a i s t r o v s k i j [1970].

Proposition 5 (Tasković, [2001]). Let D ⊂ Rn be a convex set and let F ⊂ R be a field.
If f : D → R0

+ satisfies the following inequality of the form as

f(λx+ (1− λ)y) ≤ f(x)

λ
+

f(y)

1− λ(L)

for all points x, y ∈ D adn for arbitrary λ ∈ F ∩ (0, 1), then the following inequality holds
in the form as

f

(
n∑
k=1

λkxk

)
≤

n∑
k=1

f(xk)

λk
(G)

for every number n ∈ N\{1}, for arbitrary λ1, . . . , λn ∈ F ∩(0, 1) satisfying λ1 +· · ·+λn =
1, and for all points x1, . . . , xn ∈ D.

On the other hand, for ψ(J)-convex functions the following adequate statement holds,
as a consequence of Proposition 4, in the form as.

Proposition 6 (α(J)-convex functions). Let D ⊂ Rn be a convex and open set. If
f : D → R is a α(J)-convex function, then the following inequality holds in the form as

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + αλ(1− λ)‖x− y‖2(α)

for every number λ ∈ Q ∩ [0, 1] and for all points x, y ∈ D. Equality holds in (α) if and
only if x = y.
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1.4. Continuity of general J-inner functions. A statement of Bernstein-
Doetsch in 1915 says that if D ⊂ Rn is a convex and open set, f : D → R is
a J-convex function, T ⊂ D is open and nonempty, and f is bounded above
on T , then f is continuous in D. Are there other sets T for general J-convex
and J-inner functions with this property? In this section we will deal with
such questions.

In connection with the preceding, let D ⊂ Rn. A general J-inner function
f : D → R for some function g : f(D)2 → R is called locally oscilation at
a point x0 ∈ D iff there exists a neighbourhood U ⊂ D of x0 such that

max
{
f(x), f(y), g

(
f(x), f(y)

)}
−min

{
f(z), f(t), g

(
f(z), f(t)

)}
<C‖x− x0‖

(Os)

for some real constant C > 0, and for all x, y, z, t ∈ U .
A mapping f : D → R is with the property of local oscillation in D if it

have the locally oscillation at every point of D.
We are now in a position to formulate the following statement with who

we precision, correction and expand an our former result.

Theorem 5. Let D ⊂ Rn be a convex and open set, and let f : D → R be
a general J-inner function for some bounded function g : f(D)2 → R. If f
with the property of local oscillation in D, then it is continuous in D.

Proof. Let f be a locally oscilation at a point of D. Take an arbitrary
x0 ∈ D. Thus, there exists constant r > 0 such that K(x0, r) ⊂ D and
(Os) for all x, y, z, t ∈ K(x0, r). For an arbitrary x ∈ K(x0, r) we have
‖x − x0‖ < r, and consequ- ently we can find a λ ∈ Q ∩ (0, 1) such that
‖x− x0‖r−1 < λ < 2‖x− x0‖r−1. Put

y = x0 + λ−1(x− x0), z = x0 − λ−1(x− x0).(1)

Hence we have ‖y − x0‖ < r, and ‖z − x0‖ < r, which means that
y, z ∈ K(x0, r). Also, we obtain that x = λy + (1 − λ)x0 and x0 = (1 +
λ)−1x + (1 + λ)−1λz. By Theorem 2a, since f is general J-inner we have
from (M) and (N)

min
{
f(y), f(x0), g

(
f(y), f(x0)

)}
≤f(x)≤max

{
f(y), f(x0), g

(
f(y), f(x0)

)}(2)

and

min
{
f(x), f(z), g

(
f(x), f(z)

)}
≤f(x0)≤max

{
f(x), f(z), g

(
f(x), f(z)

)}
.

(3)

Since x, y, z, x0 ∈ K(x0, r) we obtain the following inequalities of the
adequate form as:

f(x)−f(x0)≤max
{
f(y), f(x0), g

(
f(y), f(x0)

)}
−min

{
f(x), f(z), g

(
f(x), f(z)

)}
.
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and

f(x)−f(x0)≥min
{
f(y), f(x0), g

(
f(y), f(x0)

)}
−max

{
f(x), f(z), g

(
f(x), f(z)

)}
.

Hence by the preceding inequality of the form (Os), for all points x, y, z, x0 ∈
K(x0, r), we obtain the following inequalities in the form as

−C‖x− x0‖ < f(x)− f(x0) < C‖x− x0‖.(4)

The preceding inequalities (4) proves the continuity of f at a point x0 ∈ D.
Whence, since x0 ∈ D has been arbitrary, the continuity of f in D follows.
The proof is complete. �

In connection with the preceding facts, we have the following locally form
of (Os). A general J-inner function f : D → R for some function g : f(D)2 →
R is called round locally oscillation at a point x0 ∈ D iff there exists a
neighbourhood U ⊂ D of x0 such that

A := max
{
f(y), f(x0), g

(
f(y), f(x0)

)}
−

−min
{
f(x), f(z), g

(
f(x), f(z)

)}
< C‖x− x0‖

(Oa)

and

B := min
{
f(y), f(x0), g

(
f(y), f(x0)

)}
−

−max
{
f(x), f(z), g

(
f(x), f(z)

)}
> −C‖x− x0‖

(Ob)

for some real constant C > 0, and for all x, y, z ∈ U . A mapping f : D → R
is with the property of round local oscillation in D iff it have the round
locally oscillation at every point of D.

An immediate consequence of the preceding proof of Theorem 4 is the
following statement.

Theorem 5a. Let D ⊂ Rn be a convex and open set, and let f : D → R be
a general J-inner function. If f with the property of round local oscillation
in D, then it is continuous in D.

This proof is totally analogous to the proof of the preceding statement.
From the preceding statement, we are now in a position to formulate the

following consequence.

Corollary 2. (Bernstein-Doetsch, [1915]). Let D ⊂ Rn be a convex and
open set, and let f : D → R be a J-convex function. If f is locally bounded
above at a point of D, then it is continuous in D.

Proof. We notice that J-convex functions are general J-inner functions. Also,
let f be a locally bounded at an arbitrary point x0 ∈ D. Thus there exist
positive constants M and r such that K(x0, r) ⊂ D and |f(t)| ≤ M for
t ∈ K(x0, r). Then, the analogous to the preceding proof, for an arbitrary
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x ∈ K(x0, r) we have ‖x − x0‖ < r, and we can find a λ ∈ Q ∩ (0, 1) such
that

‖x− x0‖r−1 < λ < 2‖x− x0‖r−1,

and that (1). Since f is a J-convex function we obtain from Theorem 2a the
following two inequalities in the forms as

f(x) ≤ λf(y) + (1− λ)f(x0), f(x0) ≤ (1 + λ)−1f(x) + λ(1 + λ)−1f(z)

for all points x, y, z ∈ K(x0, r). Thus f satisfies the conditions (Oa) and
(Ob), because

A ≤ λf(y) + (1− λ)f(x0)− f(x0) = λ
[
f(y)− f(x0)

]
< 4Mr−1‖x− x0‖

and

B ≥ f(x)− (1 + λ)−1f(x)− λ(1 + λ)−1f(z) =

= λ(1 + λ)−1
[
f(x)− f(z)

]
> −4Mr−1‖x− x0‖.

This means that f satisfy all the required hypotheses in Theorem 5a.
Applying Theorem 5a to the mapping f we obtain that it is continuous in
D. The proof is complete. �

Further, we shall introduce the concept of round locally boundness in
D ⊂ Rn. A general J-inner function f : D → R for some bounded above
function g : f(D)2 → R with M > 0 is called round locally bounded
above at a point x0 ∈ D iff there exists a neighbourhood U ⊂ D of x0 such
that

f(x) ≤M < min
{
f(y), f(z), g

(
f(y), f(z)

)}
+ C‖x− x0‖(Bo)

for some real constant C > 0, and for all x, y, z ∈ U . A mapping f : D → R
is with the property of round local bounded above in D iff it have the
round locally bounded above at every point of D.

We are now in a position to formulate the following statement with who
we precision, correction and expand an our former result.

Theorem 6. Let D ⊂ Rn be a convex and open set, and let f : D → R be a
general J-inner function for some bounded above function g : f(D)2 → R. If
f with the property of round local bounded above in D, then it is continuous
in D.

Proof. Let f be a round locally bounded above at a point of D. Take an
arbitrary x0 ∈ D. Thus, there exists positive constants M , C and r such
that (Bo) for all x, y, z ∈ K(x0, r) ⊂ D, For an arbitrary x ∈ K(x0, r) we
have ‖x− x0‖ < r, and consequently we can find a λ ∈ Q ∩ (0, 1) such that
‖x − x0‖r−1 < λ < 2‖x − x0‖r−1. From (1) and by Theorem 2a, since f
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is general J-inner we obtain (2) and (3) for all x, y, z ∈ K(x0, r). Hence by
(Bo) we obtain

f(x)− f(x0) ≤M −min
{
f(x), f(z), g

(
f(x), f(z)

)}
< C‖x− x0‖(5)

and

f(x)− f(x0) ≥ −
(
M −min

{
f(y), f(x0), g(f(y), f(x0))

})
> −C‖x− x0‖

(6)

for all x, y, z ∈ K(x0, r). The preceding inequalities (5) and (6) proves the
continu-ity of f at a point x0 ∈ D. Whence, since x0 ∈ D has been arbitrary,
the continuity of f in D follows. The proof is complete. �

Open problem 1. Let ⊂ Rn be a convex and open set, and let f : D → R
be a general J-inner function. If f is locally oscillation at a point of D, does
f have the property of local oscillation in D?

2. General convex functions

In this section we continue the study of the general convex functions, which are intro-
duced in the former paper by Ta s k o v i ć: Mat. Japonica, 37 (1992), 367-372. This
section presents a new characterization of general convex functions in term of general level
sets. Applications in convex analysis are considered.
Introduction and some results. In our former paper, have introduced
the notion of general convex functions. A function f : D → R, where R
denotes the real line and D is a convex subset of Rn, is said to be general
convex if there is a function g : f(D)2 → R such that

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
(Max)

for all x, y ∈ D and for all λ ∈ [0, 1]. We notice that the set of all convex and
quasiconvex function can be a proper subset of the set all general convex
functions.

In order, the function g : R2 → R is increasing if xi, yi ∈ R and xi ≤ yi
(i = 1, 2) implies g(x1, x2) ≤ g(y1, y2). On the other hand, the function
g : R2 → R is level increasing if it is increasing and with the property

g
(

max
{
x, g(x, x)

}
,max

{
x, g(x, x)

})
≤ max

{
x, g(x, x)

}
for every x ∈ R. Geometrically see Figures 1, 2 and 3. Further see: Reddy-
Mukherjee [2001].

It is well-known that a convex function can be characterized by convexity
of its epigraph. Also, we know that a quasiconvex function can be charac-
terized by convexity of its level sets.

In this paper we present a new characterization of general convex functions
as convexity of their general level sets. In this sense, we are now in a position
to formulate main general statement.
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Figure 1 Figure 2

Theorem 7. Let D ⊂ Rn be a convex and open set.The function f : D → R
is general convex for some level increasing function g : R2 → R if and only
if

g(Da) :=
{
x ∈ D|max

{
f(x), g(f(x), f(x))

}
≤ max

{
a, g(a, a)

}}
(GI)

is a convex set for each number a ∈ R.

Figure 3

Proof. Suppose that f is a general convex function, and let x, y ∈ g({Da}).
Therefore x, y ∈ D and

max
{
f(x), g

(
f(x), f(x)

)}
,max

{
f(y), g

(
f(y), f(y)

)}
≤ max{a, g(a, a)}.

(7)

Let z = λx+ (1− λ)y for λ ∈ [0, 1]. By convexity of D we obtain z ∈ D.
Furthemore, by general convexity of f , i.e., from (Max) and (7) we have

f(z) ≤ max
{
f(x), f(y), g

(
f(x), f(y)

)}
≤

≤ max
{
f(x), f(y),max

(
g(f(x), f(x)), g(f(y), f(y))

)}
≤ max{a, g(a, a)}.

Thus f(z) ≤ max{a, g(a, a)} and from level increasing of g : R2 → R we
obtain g(f(z), f(z)) ≤ g(max{a, g(a, a)}, max{a, g(a, a)} ≤ max{a, g(a, a)}.
This mean that is max{f(z), g(f(z), f(z))} ≤ max{a, g(a, a)}, i.e., z ∈
g(Da). Thus g(Da) is a convex set.

Conversely, suppose that g(Da) is a convex set for each number a ∈ R.
Let z = λx + (1 − λ)y for all λ ∈ [0, 1]. Notice that x, y ∈ g({Da}) for
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max{a, g(a, a)} = max{f(x), f(y), g(f(x), f(y))}. By assumption, g({Da})
is convex, so that z ∈ g({Da}). Therefore,

f(z) ≤ max
{
f(z), g

(
f(z), f(z)

)}
≤

≤ max{a, g(a, a)} = max
{
f(x), f(y), g

(
f(x), f(y)

)}
.

Hence, f is a general convex function. The proof is complete. We notice,
from the preceding proof of Theorem 7 as an immediate fact we obtain the
following statement. �

Corollary 3. Let D ⊂ Rn be a convex and open set, and let f : D → R. If
there is a function g : R2 → R such that the sets g(Da) are convex, then f is
a general convex function.

On the other hand, from the preceding statement, we are now in a position
to formulate the following consequence for quasiconvex functions.

In this sense, a function f : D → R, where D is a convex subset of Rn, is
said to be quasiconvex if

f
(
λx+ (1− λ)y

)
≤ max{f(x), f(y)}

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that the set of all
quasiconvex function can be a proper subset of the set all general convex
functions.

Corollary 4. (De Finetti [1949], Fenchel [1949]). Let D ⊂ Rn be a convex
and open set. The function f : D → R is quasiconvex if and only if

La :=
{
x ∈ D|f(x) ≤ a

}
is a convex set for each number a ∈ R. (The set La is called level set).

Proof. If to teasing on the quasiconvex class functions taking g(f(x), f(y)) =
max{f(x), f(y) from Theorem 7 we obtain directly this statement for qua-
siconvex functions and level sets. The proof is complete. �

Further, as an immediate consequence of Theorem 7 we obtain directly
the following statement with which we precision an our former result.

Corollary 5. (Extremal principle, Tasković [1992b]). Let X be a reflexive
Banach space and let M be a nonempty, closed, bounded and convex set in
X. If f : M → R∪ {+∞} is a general convex function for some continuous
level increasing function g : R2 → R and if the set g(Da) is closed for all
a ∈ R, then f has a minimum on M .

Proof. The set M is weakly compact, because M is bounded, closed and
convex set in reflexive Banach space X. Further, g(Da) is closed and convex
(from Theorem 7), and hence weakly closed. Therefore f is lower semi-
continuous in the weak topology on M . The conclusion now follows from
Weierstrass theorem. The proof is complete. �
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Further applications. We now give a result which shows that the maxi-
mum of a general convex function over a compact polyhedral set occurs at
an extreme point.

A nonempty set D ⊂ Rn is called a polyhedral set if it is the intersection
of a finite number of closed half spaces. Note that a polyhedral set is a
closed convex set. A vector z ∈ D is called an extreme point of D if
z = λx+ (1− λ)y with λ ∈ (0, 1) and x, y ∈ D implies that z = x = y.

Theorem 8. Let D ⊂ Rn be a nonempty compact polyhedral set, and let
f : D → R be a continuous and general convex function for some level
increasing function g : R2 → R. Consider the problem to maximize f(x)
subject to x ∈ D. Then there exists an optimal solution ξ ∈ D to the
problem which is an extreme point of D.

Proof. Note that f is continuous on D and hence attains a maximum, say,
at ξ ∈ D. If there is an extreme point whose objective is equal to f(ξ),
then the result is at hand. Otherwise, let x1, . . . , xk be the extreme points
of D, and assume that f(ξ) > f(xj) for j = 1, . . . , k. By representation
of points in D, ξ ∈ D can be represented as ξ = λ1x1 + · · · + λkxk, where
λ1 + · · · + λk = 1 for λj ≥ 0 (j = 1, . . . , k). Since f(ξ) > f(xj) for each
j = 1, . . . , k we obtain

f(ξ) > max
j=1,...,k

f(xj) := max{a, g(a, a)}.(8)

Now consider the sets g(Da) with (G1) for some level increasing function
g : R2 → R. Note that xj ∈ g(Da) for j = 1, . . . , k, and by general convexity
of f (Theorem 1) the set g(Da) is convex. Hence, ξ = λ1x1 + · · · + λkxk
belongs to g(Da), i.e.,

max
{
f(ξ), g

(
f(ξ), f(ξ)

)}
≤ max{a, g(a, a)}.

This implies that f(ξ) ≤ max{a, g(a, a)}, which contradicts (8). This
contra-diction shows that f(ξ) = f(xj) for some extreme point xj . The
proof is complete. �

We notice that quasiconvex functions are, de facto, general convex func-
tions. Thus we obtain directly as an immediate consequence of Theorem
8 and corresponding result for quasiconvex functions. This mean that the
maximum of a quasiconvex function over a compact polyhedral set occurs
at an extreme point.
General level sets. In what follows we assume that D is nonempty convex
subset of Rn and ε is a positive constant. Recall that a function f : D → R
is said to be ε-quasiconvex if

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y)

}
+ ε

for all x, y ∈ D, and all λ ∈ [0, 1]. For ε = 0 this definition reduces to that
of quasiconvex function, cf. Roberts-Varberg [1973].



50 Inequalities of General Convex Functions and Applications

Recall that a function f : D → R is said to be ε-general convex if for
some ε > 0 there is a function g : f(D)2 → R such that

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
+ ε(M)

for all x, y ∈ D, and all λ ∈ [0, 1]. For ε = 0 this definition reduces to that
of general convex function.

On the other hand, the function g : R2 → R is ε-level increasing if it is
increasing and with the property

g
(

max
{
x, g(x, x)

}
+ ε,max{x, g(x, x)}+ ε

)
≤ max

{
x, g(x, x)

}
+ ε

for every x ∈ R and ε > 0.
Assumme that f : D → R is a ε-general convex function for some ε-level

increasing function g : R2 → R and consider the general level sets

g(La) :=
{
x ∈ D|max

{
f(x), g

(
f(x), f(x)

)
≤ a

}
for a ∈ R. It is clear that

⋃
a∈R g(La) = D and g(La) ⊂ g(Lb) whenever

a < b. We notice, the set g(La) is called general level set.
We are now in a position to formulate the following statement with which

we precision and expand a fact (a comment) in 1992.

Theorem 9. Let D ⊂ Rn be a nonempty convex set, and let f : D → R be
a ε-general convex function for some ε-level increasing function g : R2 → R.
If x1, . . . , xm+1 ∈ g(La) for m ∈ N, a ∈ R, and λ1 + · · · + λm+1 = 1
(λ1, . . . , λm+1 ∈ [0, 1]), then

λ1x1 + · · ·+ λm+1xm+1 ∈ g(Lmax{a,g(a,a)}+εk(m)),

where k(m) = 1 + [log2m]. (For this result and further facts see: Tasković
[2005].)

Proof. If x, y ∈ g(La) and λ1 + λ2 = 1 (λ1, λ2 ∈ [0, 1]) we have max{f(x),
g(f(x), f(x))} ≤ a, and max{f(y), g(f(y), f(y))} ≤ a. From inequality (M)
for z = λ1x + λ2y we obtain f(z) ≤ max{f(x), f(y), g(f(x), f(y))} + ε ≤
max{a, g(a, a)}+ ε. By ε-level increasing of g : R2 → R we obtain

g
(
f(z), f(z)

)
≤g
(

max
{
a, g(a, a)

}
+ ε,max{a, g(a, a)}+ ε

)
≤ max{a, g(a, a)}+ ε.

This means that max{f(z), g(f(z), f(z))} ≤ max{a, g(a, a)}+ ε, i.e., z =
λ1x+ λ2y ∈ g(Lmax{a,g(a,a)}+ε). By induction we can show that

λ1x1 + · · ·+ λ2rx2r ∈ g(Lmax{a,g(a,a)}+rε),(9)

for all r ∈ N, for x1, . . . , x2r ∈ D and λ1, . . . , λ2r ∈ [0, 1] with λ1+· · ·+λ2r =
1. Fix an m ∈ N and assume that x1, . . . , xm ∈ D with λ1, . . . , λm ∈ [0, 1]
and λ1 + · · ·+ λm = 1. Take the minimal r ∈ N such that m+ 1 ≤ 2r. One
can easily check that r = [log2m]+1 := k(m). In the case m+1 < 2r, let us
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put λm+2 = · · · = λ2r = 0 and xm+2 = · · · = x2r := x1. Then by preceding
facts and (3), we obtain

λ1x1 + · · ·+ λm+1xm+1 = λ1x1 + · · ·+ λ2rx2r ∈ g(Lmax{a,g(a,a)}+εk(m)).

�

From Theorem 9 we are now in a position to formulate the following
directly consequence for quasiconvex functions.

Corollary 6. (Nikodem, [1988]). Let D ⊂ Rn be a nonempty convex set,
and let f : D → R be a ε-quasiconvex function. If x1, . . . , xm+1 ∈ La for
m ∈ N, a ∈ R, and λ1 + · · ·+ λm+1 = 1 (λ1, . . . , λm+1 ∈ [0, 1]), then

λ1x1 + · · ·+ λm+1xm+1 ∈ La+εk(m),

for k(m) := 1 + [log2m].

Proof. If to teasing on the ε-quasiconvex class functions taking g(f(x), f(y)) =
max{f(x), f(y)} from Theorem 9 we obtain directly this statement, because
in this case g(La) = La. The proof is complete. �

Annotations. A function f : [a, b]→ R is said to be convex if and only if each shord lies
above the corresponding arc of the curve. In contrast to arbitrary real functions, convex
functions possess a number of remarkable properties of which we list two here: 1) if f has
a local minimum at x0, then f also has a global minimum at x0; and 2) If f ′ exists on
[a, b], then on [a, b] : f is convex if and only if f ′ is monotonely increasing.

The property 2) yields the connection between convex functionals and monotone op-
erators. A convex function possesses only minima as critical points. If f : [a, b] → R is
a convex but not necessarily differentiable function, then a global minimum at x0 can
be characterized by 0 ∈ ∂f(x0) instead of by f ′(x0) = 0 or f ′(x0)(x − x0) ≥ 0 for all
x ∈ [a, b].

Figure 4

Here, the so-called subdifferential ∂f(x0) equals the set of all slopes m of
the straight lines through (x0, f(x0)) which lie beneath the curve determined
by f is the starting point for the convex analysis that we develop in the
chapter 5. For convex sets and convex functions see Figs. 4 and 5.
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Figure 5

3. General Hahn-Banach theorem

In this section we give some generalizations of the well known Hahn-
Banach theorem in terms of general convex functions.

Let A ⊂ X be a subset of linear space X. We say that A is Q-radial at
a point a ∈ A if for every y ∈ X (y 6= 0), there exists an εy > 0 such that
a+ λy ∈ A for every λ ∈ Q ∩ (0, εy).

Lemma 3. Let X be a linear space, let D ⊂ X be a set Q-convex and Q-
radial at a point x0 ∈ D, and let L ⊂ X be a linear space (over Q) such
that x0 ∈ L. Let f : D → R be a function fulfilling the inequality

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
(Q)

for a function g : f(D)2 → R, for all x, y ∈ D and for every λ ∈ Q ∩ [0, 1].
If z /∈ L, if Z = Lin(L ∪ {z}) and if h : L → R is a linear functional such
that

h(x) ≤ f(x) for every x ∈ D ∩ L,(10)

then there exists a linear functional H : Z → R such that the following
inequality holds in the form as

H(x) ≤ f(x) for every x ∈ D ∩ Z
and H|L = h, i.e., there is an extension of the linear functional h on Z.

Hence we derive the rational version of the Hahn-Banach theorem for the
general convex functions in the form as.

Theorem 10. Let X be a linear space, let D ⊂ X be a set Q-convex and
Q-radial at a point x0 ∈ D, and let L ⊂ X be a linear space (over Q) such
that x0 ∈ L. Let f : D → R be a function fulfilling (Q) for all x, y ∈ D and
for every λ ∈ Q ∩ [0, 1]. If h : L → R is a linear functional with property
(10), then there exists a linear functional H : X → R such that

H(x) ≤ f(x) for every x ∈ D
and H|L = h, i.e., there is an extension of the linear functional h on the
space X.

In this section arguing as in the proof of Theorem 10 we can get however
the following result.
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Theorem 11. (General Hahn-Banach theorem). Let X be a real linear
space, let D ⊂ X be a subspace and let f : X → R be a general convex
function such that

h(x) ≤ f(x) for every x ∈ D,

where h : D → R is a linear functional. Then there is a linear functional
H : X → R such that

H(x) ≤ f(x) for every x ∈ X

and H|D = h, i.e., there is a linear extension of the linear functional h on
X.

By the preceding method, we also prove the following result, which is a
separation theorem on a linear space.

Theorem 12. (Separation of concavity and general convexity). Let E be a
real linear space, let D ⊂ E be a nonempty convex subset, and let f : E → R
be a general convex with tent function such that

k(x) ≤ f(x) for every x ∈ D,

where k : D → R is a concave functional. Then there is a linear functional
H : E → R such that

k(x) ≤ H(x) for every x ∈ D,

and

H(y) ≤ f(y) for every y ∈ E.

For the proof of this statement the following result is essential.

Lemma 4. Let X be a nonempty compact convex subset of a separated linear
topological space and fv : X → R ∪ {+∞} for v ∈ I a family of lower semi-
continuous general convex with tent functionals. If for any finite indices
v1, . . . , vn the following inequality holds

λ1fv1(y) + · · ·+ λnfvn(y) ≤ 0

for every y ∈ X and for any nonnegative numbers λ1, . . . , λn with property
λ1 + · · ·+ λn = 1, then there is an x ∈ X such that

fv(x) ≤ 0 for every v ∈ I.

Let E be a linear functional and let f : E → R be a general convex
with tent function. For two nonempty subsets A and B of E, we consider a
number

f(A,B) := inf
{
f(x− y) : x ∈ A, y ∈ B

}
.

As a directly consequence of the preceding results we obtain the following
statement.
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Proposition 7. Let E be a real linear space and let f : E → R be a general
convex with tent function. If C and D are nonempty convex subsets of E
such that f(C,D) > −∞, then there is a linear functional H : E → R such
that

inf
{
H(x) : x ∈ C

}
= f(C,D) + sup

{
H(y) : y ∈ D

}
and

H(x) ≤ f(x) for every x ∈ E.

Let X be a real linear space, D a convex set in the space X, k : D → R
and f : D → R are given functionals, kβ : D → R (β ∈ J) and fα : D → R
(α ∈ I) denote the sequences of concave and general convex functionals
such that k(x) ≤ {kβ}(x), fα(x) ≤ f(x) for all x ∈ D, respectively. Also,
let the envelope (of functional f) f̄(x) = supα∈I fα(x) be a general convex
with tent function. If the functionals k : D → R and f : X → R have the
preceding properties we call that k and f have the envelope majorantes
property.

Theorem 12a. Let X be a real linear space, let D ⊂ X be a nonempty
convex set, and let k : D → R and f : X → R have the envelope majorantes
property. Then there is a linear functional H : X → R such that

k(x) ≤ H(x) for every x ∈ D,
H(x) ≤ f(x) for every x ∈ X

if and only if the following inequality holds

inf
β∈J

Kβ(x) ≤ inf
λ>0

1

λ
sup
α∈I

fα(λx)

for every x ∈ ConvD, where the functions Kβ(x) are defined by

Kβ(x) =

{
kβ(x) for every x ∈ D,
−∞ for every x ∈ ConvD)\D.

Theorem 13. (Extension of Mazur-Orlicz’s theorem). Let X be a real linear
space, and let g : X → R be a given functional. If J is an arbitrary index
set, {xj : j ∈ J} ⊂ X, and if {cj : j} ∈ J ⊂ R, then the system of form

φ ≤ g, cj ≤ φ(xj) for j ∈ J

has a solution φ ∈ X∗ if and only if for every finite set {j(1), . . . , j(n)} ⊂ J
and for every set {α1, . . . , αn} of nonnegative numbers we have

n∑
k=1

αkcj(k) ≤ g

(
n∑
k=1

αkxj(k)

)
.
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If g : X → R is a sublinear functional, then from Theorem 13 we obtain
well known result in 1934 of S.Mazur and W. Orlicz.

In this section we will consider a stronger version of the general Hahn-
Banach theorem which will also turn out to be equivalent to the Axiome of
Choice.

Theorem 14. (An equivalent of Axiom of Choice). Let M be a subspace of
real linear space E and S a subset of E. Suppose f : E → R is a general
convex functional and h : M → R a linear functional such that

h(x) ≤ f(x) for every x ∈M.

Then the set G of all f -dominated linear extensions of h to E has an
element g : E → R such that for all H ∈ G with g(s) ≤ H(s) for all s ∈ S,
we have g(s) = H(s) for all s ∈ S. That is, g is S-maximal in G.

4. A sandwich with general convexity

In is the aim of this section to characterize which can be separated by
a general convex function. This leads us to functional inequality for real
functions f, g : I → R (I ⊂ R is an interval) such that

f
(
λx+ (1− λ)y

)
≤ max

{
g(x), g(y), G

(
g(x), g(y)

)}
(R)

for a continuous increasing function G : g(I)2 → R, for all x, y ∈ I and for
arbitrary λ ∈ [0, 1].

Theorem 15. (Sandwich Theorem). Real functions f, g : I → R (I ⊂ R is
an interval) satisfy (R) for all x, y ∈ I and arbitrary λ ∈ [0, 1] if and only if
there exists a general convex function h : I → R for a continuous increasing
function S : h(I)2 → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ I.(R)

Arguing as in the proof of Theorem 15, by Tasković [2001], we can get
however the following result.

Theorem 16. (Tasković, [2001]). Real functions f, g : D → R (D is a
convex subset of a vector space) satisfy for a continuous increasing function
G : g(D)n → R the following inequality

f

 n∑
j=1

λjxj

 ≤ max
{
g(x1), . . . , g(xn), G

(
g(x1), . . . , g(xn)

)}
(11)

for all n ∈ N, for all x1, . . . , xn ∈ D and for reals λ1, . . . , λn ∈ [0, 1] with
property λ1+· · ·+λn = 1 if and only if there exists a general convex function
h : D → R for a continuous increasing function S : h(D)n → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ D.(12)
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We notice, if real functions f and g, defined on a convex subset D of an
(n− 1)-dimensional real linear space, satisfy (11) if and only if there exists
a general convex function h : D → R satisfying (12).

Further applications of Theorem 15 concern solutions of the inequalities
for the function f : J → R (J either R0

+ or R) with

f
(
λx+ (T − λ)y

)
≤ max

{
f(x), f(y), G

(
f(x), f(y)

)}
(13)

for a continuous increasing function g : f(J)2 → R, for all x, y ∈ J , for given
T > 0 and for arbitrary λ ∈ [0, T ].

For given T > 0 and f : J → R we define the function {fT } : J → R by
the following formula in the form as

fT (x) = T−1f(Tx).

Theorem 17. (Taković, [2001]). Let T be a positive real number. A function
f : J → R satisfies (13) for all x, y ∈ J and arbitrary λ ∈ [0, T ] if and only if
there exists a general convex function ψ : J → R for a continuous increasing
function S : ψ(J)2 → R such that

ψT (x) ≤ f(x) ≤ ψ(x) for every x ∈ J.

Let f : I → R (I ⊂ R is an interval) for a continuous increasing function
G : f(I)2 → R satisfy the following inequality

f
(
λx+ (T − λ)y + (1− T )ξ

)
≤ max

{
f(x), f(y), G

(
f(x), f(y)

)}
(14)

for all x, y ∈ I, for given T ∈ (0, 1), for arbitrary λ ∈ [0, T ] and for fixed
ξ ∈ I. Fix a real interval I and a point ξ ∈ I. For T ∈ (0, 1) put

I∗T = TI + (1− T )ξ.(15)

Given a real function ψ with the domain containing I∗T , we define ψ∗T :
I → R by the following formula in the form as

ψ∗T (x) = T−1
(
ψ(Tx+ (1− T )ξ)− (1− T )ψ(ξ)

)
.

Theorem 18. Let T ∈ (0, 1). A function f : I → R (I ⊂ R is an interval)
satisfies (14) for all x, y ∈ I and arbitrary λ ∈ [0, T ] if and only if there
exists a general convex function ψ : I∗T → R for a continuous increasing
function S : ψ(I∗T )2 → R such that{

ψ∗T (x) ≤ f(x) for every x ∈ I, and
f(x) ≤ ψ(x) for every x ∈ I∗T .

(16)
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5. Characterizations of general convexity

A general convex function f : D → R is said to be general convex with
contact if (Max) holds, if there are x0, y0 ∈ D such that f(x0) = f(y0) =
g(f(x0), f(y0)), and if for x1 < y1 < z1

min
{
f(x1), f(z1), g

(
f(x1), f(z1)

)}
< max

{
f(x1), f(z1), g

(
f(x1), f(z1)

)}(Mm)

implies that there are a1, a2 ∈ D such that

f(x0) < min
{
f(a1), f(a2), g

(
f(a1), f(a2)

)}
(U)

or there are b1, b2 ∈ D such that

max
{
f(b1), f(b2), g

(
f(b1), f(b2)

)}
< f(x0).(V)

Also, a function f : D → R is said to be in contact with a function
g : f(D)2 → R if f(x0) = f(y0) = g(f(x0), f(y0)) for some x0, y0 ∈ D, and
if (Mm) implies (U) or (V); if g is a continuous function, then f is said to
be in continuous contact.

We are now in a position to formulate our the following characterizations
for general convex functions.

Theorem 19. (Monotonity of quotients). Let J ⊂ R be an open interval,
and let f : J → R be a function in contact with a function g : f(J)2 → R.
Then each of the following conditions (postulated for every x, y, z ∈ J with
x < y < z) is necessary and sufficient for the function f to be general convex
with contact g :

f(y) ≤ max
{
f(x), f(z), g

(
f(x), f(z)

)}
,(a)

2f(y)− f(x)−max{f(x), f(z), g(f(x), f(z))}
y − x

≤(b)

≤ 2f(z)− f(x)−max{f(x), f(z), g(f(x), f(z))}
z − x

,

2f(z)− f(x)−max{f(x), f(z), g(f(x), f(z))}
z − x

≤(c)

≤ 2f(z)− f(y)−max{f(x), f(z), g(f(x), f(z))}
z − y

.

Also, we are now in a position to formulate our the following characte-
rizations for general convex functions.

Theorem 20. (Monotonity of quotients). Let J ⊂ R be an open interval,
and let f : J → R be a function in contact with a function g : f(J)2 → R.
Then each of the following conditions (postulated for arbitrary a, b ∈ J and
for every x, y, z ∈ J with x < y < z) is necessary and sufficient for the
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function f to be general convex with contact g :

f(ξ) ≤ max
{
f(a), f(b), g

(
f(a), f(b)

)}
for all ξ ∈ [a, b],(a)

2f(y)− f(x)−max{f(a), f(b), g(f(a), f(b))}
y − x

≤(b)

≤ 2f(z)− f(x)−max{f(a), f(b), g(f(a), f(b))}
z − x

,

2f(z)− f(x)−max{f(a), f(b), g(f(a), f(b))}
z − x

≤(c)

≤ 2f(z)− f(y)−max{f(a), f(b), g(f(a), f(b))}
z − y

.

In connection with the preceding, a general convex function f : D → R is
said to be general convex with circled contact if (Max) holds, if there
are x0, y0 ∈ D such that f(x0) = f(y0) = g(f(x0), f(y0)), if g(f(x), f(y)) ≤
g(f(x), f(z)) for x < y < z, and if for x1 < y1 < z1

min
{
f(x1), f(z1), g

(
f(x1), f(z1)

)}
<(Mk)

< max
{

max
[
f(x1), f(z1), g(f(x1), f(z1))

]
,max

[
f(y1), f(z1), g(f(y1), f(z1))

]}
implies (U) or (V). Also, a function f : D → R is said to be in circled
contact with a function g : f(D)2 → R if f(x0) = f(y0) = g(f(x0), f(y0))
for some x0, y0 ∈ D, if g(f(x), f(y)) ≤ g(f(x), f(z)) for x < y < z, and if
(Mk) implies (U) or (V); if g is a continuous function, then f is said to be
in continuous circled contact.

From the preceding, we are now in a position to formulate our the follow-
ing characterizations for general convex functions.

Theorem 21. (Monotonity of quotients). Let J ⊂ R be an open interval,
and let f : J → R be a function in circled contact with a function g : f(J)2 →
R. Then each of the following conditions (postulated for every x, y, z ∈ J
with x < y < z) is necessary and sufficient for the function f to be general
convex with circled contact g :

f(y) ≤ max
{
f(x), f(z), g

(
f(x), f(z)

)}
,(a)

2f(z)− f(x)−max{f(x), f(z), g(f(x), f(z))}
z − x

≤(b)

≤ 2f(z)− f(y)−max{f(y), f(z), g(f(y), f(z))}
z − y

,

2f(y)− f(x)−max{f(x), f(y), g(f(x), f(y))}
y − x

≤(c)

≤ 2f(z)− f(x)−max{f(x), f(z), g(f(x), f(z))}
z − x

.
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6. Differentiation of general convexity

Now let J ⊂ R be an open interval, and let f : J → R and g : f(J)2 → R
be given functions. We define a function ga,b(I(x, h)) for x ∈ J and h ∈ R
such that h 6= 0, x+ h ∈ J by

gp(a,b)(I(x, h)) :=
f(x+ h)− 2f(x) + max{f(a), f(b), g(f(a), f(b))}

h
(Gp)

and

gq(a,b)(I(x, h)) :=
2f(x+ h)− f(x)−max{f(a), f(b), g(f(a), f(b))}

h
(Gq)

for arbitrary a, b ∈ J . For a = x + h and b = x in (Gp) and (Gq) we brief
only gp(I(x, h)) and gq(I(x, h)), respectively. In this sense, we put that is

ga,b(I(x, h)) := max
{
gp(a,b)

(
I(x, h)

)
, gq(a,b)

(
I(x, h)

)}
,

i.e.,

g(I(x, h)) := max
{
gp(I(x, h)), gq(I(x, h))

}
for x ∈ J and h ∈ R such that h 6= 0 and x+ h ∈ J .

According to Theorems 19, 20 and 21 if f : J → R (J is an open interval)
general convex with contact and continuous, the for every fixed x ∈ J the
differences quotient g(I(x, h)) is an increasing function of h. Consequently
it has finite one-sided limits as h tends to zero from the right, and from the
left. But these limits are one-sided derivates of f at x:

g(f ′+(x)) = lim
h→0+

g(I(x, h)), g(f ′−(x)) = lim
h→0−

g(I(x, h)).

Thus we have the following result.

Theorem 22. Let J ⊂ R be an open interval, and let f : J → R be conti-
nuous and general convex with continuous contact. Then at every point x ∈ J
there exists the right derivate g(f ′+(x)), and the left derivate g(f ′−(x)), and
we have

g(f ′−(x)) ≤ g(f ′+(x)) ≤ g(f ′−(y)) ≤ g(f ′+(y)(17)

for every x, y ∈ J with x < y. Moreover,

g(f ′+(x)) = lim
t→x+

g(f ′+(t)) = lim
t→x+

g(f ′−(t)),(18)

g(f ′−(x)) = lim
t→x−

g(f ′+(t)) = lim
t→x−

g(f ′−(t)).(19)

The proof of this statement is an analogy with the proof in problem 23. Thus the proof
we omit. For the proof of Theorem 22 see: T a s k o v i ć [2001].

Corollary 7. (Monotony of general derivates). Let J ⊂ R be an open
interval, and let f : J → R be a continuous general convex function with
contunuous contact. Then the functions g(f ′+), g(f ′−) : J → R are increasing.
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Theorem 23. Let J ⊂ R be an open interval, and let f : J → R contin-
uous general convex function with continuous contact. The following three
conditions are equivalent for every x ∈ J :

(a) g(f ′+(x)) is a continuous function at x,
(b) g(f ′−(x)) is a continuous function at x,
(c) f is general differentiable at x.

Proof. Condition (c) means that g(f ′+(x)) = g(f ′−(x)), condition (a) that
limt→x+ g(f ′+(t)) = limt→x− g(f ′+(t)), and condition (b) that limt→x+ g(f ′−(t)) =
limt→x− g(f ′−(t)). Relations (18) and (19) show that all the three conditions
are equivalent. The proof is complete. �

Theorem 24. Let J ⊂ R be an open interval, and let f : J → R be a
continuous general convex function with continuous contact. Then f is gen-
eral differentiable in J except at at most countably many points. If ⊂ J is
the set of the points of the general differentiability of f , then the function
f ′ : D → R is increasing and continuous.

Proof. The function g(f ′+(x)), being monotonic, may be discontinuous at at
most countably many points. In view of Theorem 23 we obtain, hence the
first part of our assertion. The second results from the fact that for x ∈ D,
we have g(f ′(x)) = g(f ′+(x)) and by Theorem 23 g(f ′+(x)) is contunuous at
every point of D. The proof is complete. �

In the sequel we say that f is twice general differentiable function at
a point x0 ∈ J iff x0 ∈ D (= the set of the points of general differentiability
of f) and the limit of the form as

g(f ′′(x0)) = [g(f ′(x0))]
′ := lim

y→x,y∈D

g(f ′(y))− g(f ′(x0))

y − x0
(DI)

exists, for every function g : f(J)2 → R under which f is a general convex
function with continuous contact. Limit (DI) is equal to

g(f ′′(x0)) = [g(f ′(x0))]
′ := lim

y→x,y∈D

g(f ′+(y))− g(f ′+(x0))

y − x0
(DI’)

whenever the letter limit exists. But since the function g(f ′+(x)) is mono-
tonic, it follows from the well-known Lebesgue’s theorem that limit (DI’)
exists almost everywhere in J . Moreover, the general differences in (DI’)
is nonnegative (since g(f ′+(x)) is increasing), and consequently so is also
g(f ′′(x0)) if it exists. Thus we obtain the following statement.

Theorem 25. Let J ⊂ R be an open interval, and let f : J → R be
a continuous general convex function with continuous contact. Then f is
twice general differentiable almost everywhere in J . Whenever it exists,
g(f ′′(x0)) ≥ 0.
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We notice, since g(f ′(x)) (defined almost everywhere in J) is monotonic,
it is measurable, and bounded on every compact subinterval of J . Thus the
expression ∫ x

a
g(f ′(t))dt(In)

is meaningful for every a, x ∈ J . In this sense, we have the following state-
ment in the form as:

Theorem 26. Let J ⊂ R be an open interval, and let f : J → R be a
continuous general convex function with continuous contact. Then, for all
a, x ∈ J we have the following expression

f(x) = f(a) +

∫ x

a
g(f ′(t))dt.(Gi)

Proof. Put F (x) that is right side equality in (Gi). The function F is general
differentiable whenever g(f ′) is continuous, and thus everywhere in J with
the exception of an at most countable set. If x ∈ J is a point of the continuity
of g(f ′), then we have F ′(x) = g(f ′(x)), i.e., F − f = constant. Since at
the point a we have F − f = 0, the constant must be zero, and thus F = f .
Hence we obtain (Gi). The proof is complete. �

As an immediate consequence of the preceding statement we obtain the
following result in the well-known form as.

Theorem 27. Let J ⊂ R be an open interval, and let f : J → R be a
continuous general convex function with continuous contact. The function f
is absolutely continuous in J .

Annotation. The integral in (Gi) is Lebesgue integral, but everything re-
mains unchanged if we replace this by the Riemann integral of g(f ′+(t))!

General derivatives. Let D ⊂ Rn be an open set, and let f : D → R be
a function. We say that f is general differentiable at a point x ∈ D iff for
every y ∈ Rn there exist the limits.

gp(f
′
y(x)) := lim

λ→0+

f(x+ λy)− 2f(x) + max{f(x), f(x+ λy), g(f(x), f(x+ λy))}
λ

and

gq(f
′
y(x)) := lim

λ→0+

2f(x+ λy)− f(x)−max{f(x), f(x+ λy), g(f(x), f(x+ λy))}
λ

for a function g : f(D)2 → R, where the functions gp(f ′y(x)) and gq(f ′y(x))
are linear of y ∈ Rn.

Precisely, let D ⊂ Rn be an open set, and let f : D → R be a function.
We say that f is general differentiable at a point x ∈ D iff for every
y ∈ Rn there exists the limit

g(f ′y(x)) = max
{
gp(f

′
y(x)), gq(f

′
y(x))

}
,(GV)
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for a function g : f(D)2 → R, where the function g(f ′y(x)) is a linear function
of the point y ∈ Rn.

Theorem 28. Let D ⊂ Rn be an open and convex set, and let f : D → R
be a continuous general convex function with continuous contact under the
function g : f(D)2 → R such that g(t, t) = t for t ∈ f(D). At every point
x ∈ D the general derivative g(f ′y(x)) exists for every y ∈ Rn. Moreover,
g(f ′y(x)) is a general convex, continuous and positively homogeneous function
and, for arbitrary µ < 0 the following inequality holds

−g(f ′|µ|y(x)) ≤ g(f ′µy(x)) for all y ∈ Rn.(iN)

7. Representing of general convexity

Further, we give representing a general convex function as an integral
inequality which, fortunately, can be taken in the sense of either Riemann
or Lebesgue.

Theorem 29. Let f : J → R (J ⊂ R is an open interval) be a continuous
function. Then f is general convex with continuous contact if and only if
there is an increasing (strictly increasing) function ψ : J → R and a point
ρ ∈ J such that

f(x)− f(ρ) ≤ 1

2

∫ x

ρ
ψ(t)dt for every x ∈ J.(N)

Proof. We suppose firs that f is general convex function with continuous
contact over a bisection function g : f(J)2 → R. By Theorem 22 we obtain
the following inequalities

f(xk)− 2f(xk−1) + max{f(xk), f(xk−1), g(f(xk), f(xk−1))}
xk − xk−1)

≤

≤ g(f ′−(xk)) ≤ g(f ′+(xk))

(N’)

where ρ = x0 < x1 < · · · < xn = x is a partition of [ρ, x] for every k ∈
{1, . . . , n}. Since by elementary the following inequality holds in the form

2(f(xk)−f(xk−1)) ≤ f(xk)−2f(xk−1)+max
{
f(xk), f(xk−1), g(f(xk), f(xk−1))

}
hence, with addition of left and right sides, we obtain the following inequal-
ities in the forms as

2(f(xk)− f(ρ)) ≤
n∑
k=1

g(f ′−(xk))(xk − xk−1) ≤
n∑
k=1

g(f ′+(xk))(xk − xk−1).

thus, letting in the preceding inequalities that n → ∞, we obtain the fol-
lowing inequalities in the form as

2(f(x)− f(ρ)) ≤
∫ x

ρ
g(f ′−(t))dt ≤

∫ x

ρ
g(f ′+(t))dt.
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Since the functions g(f ′+(x)) and g(f ′−(x)) are increasing, ψ = g(f ′−(x))
or ψ = g(f ′+(x)) will be increasing. Thus the inequality (N) holds.

Conversely, suppose that inequality (N) holds with an increasing function
ψ : J → R. Then for all x, y ∈ J(x < y) it follows

(α+ β)f(αx+ βy)− αf(x)− βf(y) ≤ α

2

∫ αx+βy

x
ψ(t)dt− β

2

∫ y

αx+βy
ψ(t)dt,

where α+β = 1 (α, β > 0). To bound this expression below, we replace both
integrands by the constant ψ(αx+ βy), this baing the smallest value of the
first integrand and the largest of the second. We obtain on the right-hand
side

α

2
ψ(αx+ βy)(αx+ βy − x)− β

2
ψ(αx+ βy)[y − (αx+ βy)] = 0.

hence, it follows the following inequality for an arbitrary function g : f(J)2 →
R in the form as

f(αx+βy)−max
{
f(x), f(y), g(f(x), f(y))

}
≤ f(αx+βy)−αf(x)−βf(y)

which is equivalent to the inequality that definies general convexity with
continuous contact. The proof is comeplete. �

Proposition 8 (Characterization of convex functions). The function f :
J → R (where J is an open interval) is convex if and only if there is an
increasing (strictly increasing) function ψ : J → R and a point ρ ∈ J such
that

f(x)− f(ρ) =

∫ x

ρ
ψ(t)dt for every x ∈ J.(Ko)

Proof. We suppose first that f is convex. Choose ψ = f ′+ which exists and
is increasing and let ρ be a point in J . By problem 26, f is absolutely
continuous on J . By an elementary argument for Riemann integrals or by
a classical theorem for Lebesgue integrals in Natanson [1961, p. 255] we
obtain

f(x)− f(ρ) =

∫ x

ρ
f ′+(t)dt =

∫ x

ρ
ψ(t)dt,

moreover, if f is strictly convex, ψ = f ′+ will be strictly increasing. For
conversely the proof is totally analogous with the proof in the preceding
result. �

Annotation. An elementay argument involving only the concepts of the
Riemann integral can be used to show that if f is convex on J , then for all
ρ, x ∈ J we obtain the following equalities in the form as

f(x)− f(ρ) =

∫ x

ρ
f ′−(t)dt =

∫ x

ρ
f ′+(t)dt,
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where ρ = x0 < x1 < · · · < xn = x is a partition of [ρ, x] and where for all
k ∈ {1, . . . , n}. we have the following inequalities of the form as

f ′−(xk−1) ≤ f ′+(xk−1) ≤
f(xk)− f(xk−1)

xk − xk−1
≤ f ′−(xk) ≤ f ′+(xk).

Thus, we can obtain the second proof of the equality (Ko), i.e., we can
obtain the second proof of Proposition 3.

In connection with this result, as an analogous, we obtain directly the
following statement.

Theorem 29a. Let f : J → R (J ⊂ R is an open interval) be a continuous
function. Then f is general convex with continuous contact if and only if
there is a convex function K : J → R and a point ρ ∈ J such that

f(x)− f(ρ) ≤ K(x)−K(ρ) for every x ∈ J.(K)

Proof. Suppose that f is a general convex function with continuous contact.
Thus, from Theorem 29, it follows that inequality (N) hods. Choose,

K(x) = 2

∫ x

ρ
ψ(t)dt for x ∈ J,

for an increasing function ψ : J → R and some ρ ∈ J , we obtain directly
that inequality (K) holds.

Conversely, if inequality (K) holds, then from Proposition 3 and Theorem
29 it follows that f is a general convex function with continuous contact.
The proof is complete. �

Differences of convex and general convex functions. The class of
all convex functions on an interval J is closed under addition, but it is
not closed under scalar multiplication or subtraction. We may, of course,
consider the class of functions representable as the difference of convex and
general convex functions.

Let BK(J) for J := [a, b] be the class of functions f : J → R representable
in the form as f ≤ ζ − h, where ζ is a continuous general convex function
with continuous contact, h is a convex function, such that g(ζ ′+(a)), g(ζ ′−(b)),
h′+(a), and h′−(b) are all finite.

Then BK(J) is a linear space. Moreover, it is easily characterized in
terms of BV (J), the space of functions of bounded variation.

Proposition 9. The function f : J → R (J := [a, b] ⊂ R) is in BK(J) if
and only if there exists a function of bounded variation r : J → R such that

f(x)− f(a) ≤ 1

2

∫ x

a
r(t)dt for every x ∈ J.(R)



Milan R. Tasković 65

Proof. If f ∈ BK(J), then f ≤ ζ − h, where ζ is general convex function
with continuous contact and h is a convex function. Also, ζ and h have finite
endpoint derivatives, By Theorem 29 and Proposition 3 we obtain

ζ(x)− ζ(a) ≤ 1

2

∫ x

a
p(t)dt, h(x)− h(a) =

∫ x

a
q(t)dt

for some increasing functions p, q : J → R. Thus, directly computation and
majorization, we obtain the following two inequalities in the form as

f(x)− f(a) ≤ (ζ(x)− ζ(a))− (h(x)− h(a)) ≤ 1

2

∫ x

a
[p(t)− 2q(t)]dt,

where p−2q is a function of bounded variation as differences of two increasing
functions.

Conversely, if f satisfies (R), then the fundamental characterization of
functions of bounded variation enables us to write r(t) = p(t)− q(t), where
p and q are increasing on J give

f(x) ≤ f(a) +

∫ x

a
p(t)dt−

∫ x

a
q(t)dt,

and it is therefore the difference of a convex function and a general con-
vex function with continuous contact. The endpoint conditions are easily
established. The proof is complete. �

We may, of course, consider the class of functions representable as the
difference of two convex functions.

Proposition 10. The function f : J → R (J := [a, b] ⊂ R) is in the form
f = ζ − h, where ζ and h are convex functions with finitess of ζ ′+(a), ζ ′−(b),
h′+(a) and h′−(b), if and only if there exists a function of bounded variation
r : J → R such that

f(x)− f(a) =

∫ x

a
r(t)dt for every x ∈ J.(R)

The proof of this statement is totally analogy with the preceding proof of Proposition 4.
Thus the proof we omit. For further facts see: R o b e r t s-V a r b e r g [1973], N a t a n -
s o n [1961] and Ta s k o v i ć [2001].

8. Inequalities of general convexity

In this section we continue the study and considerations of the general convex functions,
which are introduced by Ta s k o v i ć: Math. Japonica, 37(1992), 367-372.

We begin with introduce a concept of general subgradient for general convex functions.
Subgradients generalize the classical concept of a derivate. In this connection, for our con-
cept of general subgradient, we prove existence statement. Every general convex with tent
function have the nontrivial (different of zero) general subgradient. In this sense further
we consider general subgradient and general subdifferential of general convex functions
and their further applications.

Since the general convex functions are defined by a functional inequality, it is not
surprising that this notion will lead to a number of fundamental inequalities. Finally,
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applications of the preceding statements we give some fundamental inequalities for general
convex functions.

The following main result is proved: Let J ⊂ R be an open interval, let xi, yi ∈ J
(i = 1, . . . , n) be real numbers such that fulfilling x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. Then, a
necessary and sufficient condition in order that

n∑
i=1

f(xi) ≥ 2

n∑
i=1

f(yi)− nmax
{
f(a), f(b), g

(
f(a), f(b)

)}
(A)

holds for every general convex function f : J → R which is in contact with function
g : f(J)2 → R and for arbitrary a, b ∈ J (a ≤ xi ≤ b for i = 1, . . . , n), is that

k∑
i=1

yi ≤
k∑
i=1

xi (k = 1, . . . , n− 1),

n∑
i=1

yi =

n∑
i=1

xi.(20)

8.1. Introduction and history. This section continues the study of the
general convex functions. A function f : D → R, where R denotes the real
line and D is a convex subset of Rn, is said to be convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. Convex functions were intro-
duced (for n = 1 and λ = 1/2) by J. L. Jensen in 1906, although func-
tions satisfying similar conditions were already treated by O. Hölder, J.
Hadamard, Ch. Hermite, and O. Stolz.

Theorem 30. Let D ⊂ Rn be a convex and open set. If f : D → R is a
general convex function, then there is a function g : f(D)n → R such that

f

(∑n
i=1 pixi∑n
i=1 pi

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
(Tn)

for every n ∈ N, for all points x1, . . . , xn ∈ D, and for arbitrary numbers
p1, . . . , pn ∈ R0

+ such that p1 + · · ·+ pn > 0.

Proof. The preceding inequality (Tn) directly is consequence of Theorem 2
in the following sense. If in inequality (DN’) put λi = pi/(p1 + · · ·+ pn), we
obtain (Tn). The proof is complete. �

Theorem 31. Let D ⊂ Rn be a convex and open set and let there exist
numbers pi ∈ R (i = 1, . . . , n) and k ∈ {1, . . . , n} such that

pk > 0, pi ≤ 0 (i 6= k), p1 + · · ·+ pn > 0,(21)

where ξ := (p1 + · · · + pn)−1(p1x1 + · · · + pnxn) ∈ D for all x1, . . . , xn ∈
D. If f : D → R is a general convex function, then there is a function
g : f(D)n → R such that

f

(∑n
i=1 pixi∑n
i=1 pi

)
≤ max

{
f(x1), . . . , f(xk−1), f(ξ), f(xk+1), . . .

. . . , f(xn), g
(
f(x1), . . . , f(xk−1), f(ξ), f(xk+1), . . . , f(xn)

)}(Tr)
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for every n ∈ N, for all points x1, . . . , xn ∈ D, and for arbitrary numbers
p1, . . . , pn ∈ R with the property (21).

Proof. If to exchange pk with p1 + · · · + pn, xk ∈ D with (p1 + · · · +
pn)−1(p1x1 + · · · + pnxn) ∈ D, the points xi (i 6= k) with the points xi
(i 6= k), and pi with −pi in Theorem 30, we obtain inequality (Tn) and thus
calculation it follows inequality (Tr). The proof is complete. �

Annotation. In connection with inequality (Tn) we have the following fact.
Let D ⊂ Rn be a convex and open set. If f : D → R is a general convex
function, then there is a function g(f(D)n → R such that

Sup p1,...,pn∈R
(p1+···+pn>0)

f

(∑n
i=1 pixi∑n
i=1 pi

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}(Ts)

for every n ∈ N, for all points x1, . . . , xn ∈ D, and for arbitrary numbers
p1, . . . , pn ∈ R0

+ such that p1 + · · ·+ pn > 0

Equality holds in inequality (Ts) if and only if f(x) = g(f(x), . . . , f(x))
for every point x ∈ D.

In connection with the preceding facts, let D ⊂ Rn be a convex and open
set. The function f : D → R is a general ψ-convex function if there exist
a function ψ : R0

+ → R0
+ with ψ(0) = 0 and a function g : f(D)2 → R such

that

f(λx+(1−λ)y) ≤ max
{
f(x), f(y), g(f(x), f(y))

}
+max{λ, 1−λ}ψ(‖x−y‖)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. Applying Proposition 10 analo-
gous to the preceding facts we obtan the following result.

Theorem 32. (Tasković, [1994]). Let D ⊂ Rn be a convex and open set.
If f : D → R is a general ψ-convex function, then there is a function g :
f(D)n → R such that

f

(∑n
i=1 pixi∑n
i=1 pi

)
≤ max

{
f(x1), . . . , f(xn), g(f(x1), . . . , f(xn))

}
+

+
1

p1 + · · ·+ pn

∑
i<j≤n

max{pi, pj}ψ(‖xi − xj‖),

for every n ∈ N, for all points x1, . . . , xn ∈ D, and for arbitrary numbers
p1, . . . , pn ∈ R0

+ with the property p1 + · · ·+ pn > 0.

In the sequel we will need one fundamental notion. Let D ⊂ Rn be an
open set, and let f : D → R be a function. Any x∗ ∈ Rn such that

f(z) ≥ f(x) + x∗(z − x) for z ∈ D(C)

is called a subgradient of f at x. The set of all subgradients of f at x will
be denoted by ∂f(x). Of course, it may happen that ∂f(x) = ∅. But, if
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f : D → R be a convex function, then (C) holds, i.e., ∂f(x) is a nonempty
set for every x ∈ D.

In this section we begin with a concept of general subgradient for general
convex functions. For the case of convex functions see: Figure 6.

Figure 6

Subgradient generalize the classical concept of a derivate. In connection
with this, in this section we consider a concept of general subgradient for
general convex functions.

Let D ⊂ Rn be an open set and let f : D → R be a function. Any x∗ ∈ Rn
is said to be general subgradient if there is a function g : f(D)2 → R such
that (GS):

|f(z)− f(x)| ≥ f
(
λa+ (1− λ

)
b) + x∗(z − x)−max

{
f(a), f(b), g

(
f(a), f(b)

)}
for z ∈ D and λ ∈ [0, 1], where a, b ∈ D denoted in further two arbitrary
points. The point x∗ is called a general subgradient of f at x.

The set of all general subgradients of f at x will be denoted by g(∂f(x)).
If no general subgradient exist at x, then we set g(∂f(x)) = ∅.

We notice, if f is general convex, then (Max) and so (GS) is satisfied with
x∗ = 0. Thus x∗ = 0 is a trivial general subgradient of every general convex
function at every point x ∈ D. This means that are of importance only
nontrivial (:=different of zero) general subgradients.

The set g(∂f(x)) is called a nontrivial if there is a general subgradient
x∗ 6= 0 of f 6≡ 0 at point x ∈ D.

Simple see, if (GS) holds for all x ∈ D, then (GS) means that f is a
general convex function onD. We notice, also, simple will see that if function
f : D → R is the general convex, then the following inequality holds

f(x) ≤ max
{
f(a), f(b), g

(
f(a), f(b)

)}
for all x ∈ [a, b] ⊂ D(Max’)

for some function g : f(D)2 → R and for two arbitrary points a, b ∈ D (a <
b), where [a, b] denoted an interval in D. This fact has further interesting
consequences.

In this paper further we consider general subgradient, general subdiffer-
ential of general convex functions and their further applications for some
fundamental inequalities.



Milan R. Tasković 69

In this sense, a function f : D → R (D ⊂ Rn is a convex subset) is said
to be general convex with tent if there is a function g : f(D)2 → R such
that (Max) and that

S :=
{

(x, y) ∈ Rn+1 : x ∈ D, y ≥ max
{
f(a), f(b), g(f(a), f(b))

}}
is a convex set for arbitrary a, b ∈ D.

8.2. Existence of general subgradients. Subgradient generalize the clas-
sical concept of a derivate. In this section we will be concerned concept of
generalize sugradient for general convex functions and their existence.

Theorem 33. Let D ⊂ Rn be a convex and open set, and let f : D → R be a
general convex with tent function. Then g(∂f(x)) is a nonempty nontrivial
set for every x ∈ D.

Proof. Let a, b ∈ D be two arbitrary points. Also, let g : f(D)2 → R be a
function for which f is a general convex with tent function. Consider the
set

S =
{

(x, y) ∈ Rn+1 : x ∈ D, y > max
{
f(a), f(b), g(f(a), f(b))

}}
.

Since f is a general convex with tent function the set S is open and con-
vex and the points (x,max{f(a), f(b), g(f(a), f(b))}) ∈ Rn+1 are its frontier
points. Well known, that if S ⊂ Rn is a convex set, then through every point
of the frontier of S there passes a support hyperplane of S (see Mazur in
1933). According to this Mazur’s theorem there exists a support hyperplane
H of S passing through the point of frontier (x,max{f(a), f(b), g(f(a), f(b))}).
The hyperplane H has an equation of the form

c(z − x) + α
(
y −max

{
f(a), f(b), g(f(a), f(b))

})
= 0,(22)

where c ∈ Rn, α ∈ R, and (z, y) is the current point of Rn+1. If we had
α = 0, then every point (x, y) with an arbitrary y ∈ R, would satisfy (22),
and taking y > max{f(a), f(b), g(f(a), f(b))} we would get that H ∩ S is
nonempty, and so S, being open, would have points on both sides of H,
which is impossible.

Consequently α 6= 0. So we may write (22) in the form y = max{f(a), f(b),
g(f(a), f(b))}− cα−1(z−x). The two halfspaces into which H divides Rn+1

are determined by the inequalities

y > max−cα−1(z − x) and y < max−cα−1(z − x),

where max := max{f(a), f(b), g(f(a), f(b))}. For arbitrary y > max the
point (x, y) ∈ S and clearly we have y > max−cα−1(x− x) so that the set
S must be contained in the halfspace determined by the inequality

y > max
{
f(a), f(b), g

(
f(a), f(b)

)}
− cα−1(z − x).
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On the other hand, since f is a general convex function, we obtain that
holds inequality (Max), i.e., inequality max−f(ξ) ≥ 0, for ξ := λa + (1 −
λ)b and λ ∈ [0, 1]. Thus holds and inequality of the form |f(z) − f(x)| +
max−f(ξ) ≥ 0, i.e., holds inequality |f(z) − f(x)| + 2 max−f(ξ) ≥ max.
Take an arbitrary z ∈ D and an arbitrary t > |f(z)− f(x)|+ 2 max−f(ξ).
Then (z, t) ∈ S, whence t > max−cα−1(z − x). Letting

t→ |f(z)− f(x)| − f(ξ) + 2 max
{
f(a), f(b), g

(
f(a), f(b)

)}
,

we obtain hence the following inequality

|f(z)− f(x)| ≥ f(ξ)− cα−1(z − x)−max
{
f(a), f(b), g

(
f(a), f(b)

)}
,

and this is valid for all z ∈ D, which shows that −cα−1 ∈ g(∂f(x)), and
thus g(∂f(x)) is a nontrivial nonempty set. The proof is complete. �

As an immediate analogous of the preceding Theorem 33, we are now in
a position to formulate the following statement.
Theorem 33a. Let D ⊂ Rn be a convex and open set, and let f : D → R be a general
convex with tent function for some function g : f(D)2 → R. Then for every x ∈ D there
is a point x∗ ∈ Rn (x∗ 6= 0) such that

|f(z)| ≥ f
(
λa+ (1− λ)b

)
+ x∗(z − x)−max

{
f(a), f(b), g

(
f(a), f(b)

)}
for z ∈ D, λ ∈ [0, 1] and for two arbitrary points a, b ∈ D. Also, for every x ∈ D there is
a point x∗ ∈ Rn (x∗ 6= 0) such that the following inequality holds (Ga):∣∣∣ |f(z)| − |f(x)|

∣∣∣ ≥ f(λa+ (1− λ)b
)

+ x∗(z − x)−max
{
f(a), f(b), g

(
f(a), f(b)

)}
for z ∈ D, λ ∈ [0, 1] and for two arbitrary points a, b ∈ D.

The proof of this statement is analogous to the proof of the preceding
statement of Theorem 33.

In connection with the preceding, since the glass of all convex function is
a proper subclass of the set all general convex with tent functions, we obtain
directly the following well-known result in 1963 for convex functions.

Theorem 33b. (Bishop-Phelps, [1963]). Let D ⊂ Rn be a convex and open
set, and let f : D → R be a convex function. Then for every x ∈ D there is
x∗ ∈ Rn such that

f(z) ≥ f(x) + x∗(z − x) for z ∈ D.(C)

Proof. If to teasing on the convex class functions taking g(f(a), f(b)) =
λf(a) + (1 − λ)f(b) for arbitrary λ ∈ [0, 1] and a = b = x, then we obtain
that the former set

S =
{

(x, y) ∈ Rn+1 : x ∈ D, y > f(x)
}

is a convex set. Thus f is general convex with tent. Applying Theorem 33
to this case we obtain that (GS) holds for every x ∈ D. Since f has only a
lower line of suppport, from (GS) we have (Ca):

f(z) ≥ f(x) + f
(
λa+ (1− λ)b

)
+ x∗(z − x)−max

{
(f(a), f(b), g

(
f(a), f(b)

)}
.
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Taking a = b = x and g(f(a), f(b)) = λf(a) + (1 − λ)f(b) for arbitrary
λ ∈ [0, 1] in (Ca) we obtain f(z) ≥ 2f(x) + x∗(z − x)− λf(z)− (1− λ)f(x)
for z ∈ D, which means that (C) holds. The proof is complete. �

8.3. Derivates of general convex functions. LetD ⊂ Rn be an open set,
and let f : D → R be a function. We say that f is left general differentiable
at a point x ∈ D if there is function g : f(D)2 → R such that for every
y ∈ Rn there exists the following limit

gp(a,b)(f
′
y(x)) := lim

λ→0+

f(x+ λy)− 2f(x) + max{f(a), f(b), g(f(a), f(b))}
λ

(GD)

for arbitrary a, b ∈ D, where gp(a,b)(f ′y(x)) is a linear function of y. It
follows from (GD) that we always have gp(a,b)(f ′0(x)) = 0, where a = b = x
and g(f(x), f(x)) = f(x).

On the other hand, so we introduce one more notion. Let D ⊂ Rn be an
open set, and let f : D → R be a function. We say that f has a left general
differential at the point x ∈ D if there function g : f(D)2 → R and if there
exists an x∗ ∈ Rn such that

f(z) = 2f(x) + x∗(z − x)−max
{
f(x), f(z), g

(
f(x), f(z)

)}
+ r(x, z)

(GD’)

for z ∈ D, where the function r : R2n → R fulfils the following condition in
the form

lim
z→x

r(x, z)

‖z − x‖
= 0.(Gr)

Of course, every function f can be written in form (GD’) with every
x∗ ∈ Rn. It is enough to put r(x, z) = f(z) − 2f(x) − x∗(z − x) +
max{f(x), f(z), g(f(x), f(z))}. Here the problem lies in that x∗ should be
chosen in such a manner that the coresponding function r should satisfy
(Gr).

Theorem 34. Let D ⊂ Rn be a convex and open set, and let f : D → R
be a general convex with contact function for some function g : f(D)2 → R.
Then for every x∗ ∈ Rn we have

gp(a,b)(f
′
y(x)) ≥ x∗y for all y ∈ Rn(23)

if and only if the following inequality holds

f(z) ≥ 2f(x) + x∗(z − x)−max
{
f(a), f(b), g

(
f(a), f(b)

)}
(23’)

for z ∈ D and for two arbitrary points a, b ∈ D.

Proof. First we note, by the definition of (23’) if fix a λ > 0 and put y =
λ−1(z − x), then (23’) goes into

f(x+ λy) ≥ 2f(x) + x∗λy −max
{
f(a), f(b), g

(
f(a), f(b)

)}
.(23e)
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Conversely (23’) results from (23e) on putting z = x+ λy. Thus (23’) is
equivalent with (23e). On the other hand, if (23’), i.e., (23e) holds, then we
have

F (λ) :=
f(x+ λy)− 2f(x) + max{f(a), f(b), g(f(a), f(b))}

λ
≥ x∗y

for all y ∈ Rn and λ > 0 such that x + λy ∈ D, whence on passing to the
limit as λ→ 0+, we obtain (23).

Also, let (23) holds. Since f is general convex with contact, we have from
Theorem 20 that F (λ) is an increasing function for λ > 0, and thus we
obtain the following inequalities

F (λ) ≥ gp(a,b)(f ′y(x)) ≥ x∗y.

Hence we obtain (23e), which means that (23’) holds. Now the proof is
complete. �

As an immediate consequence of the preceding proof of Theorem 34, we
are now in a position to formulate the following statement.

Theorem 34a. Let D ⊂ Rn be a convex and open set, and let f : D → R
be a general convex with contact function. If for every x∗ ∈ Rn inequality
(23) holds, then we have x∗ ∈ g(∂f(x)).

8.4. Fundamental inequalities for general convexity. Since the gen-
eral convex functions are defined by a functional inequality, it is not surpris-
ing that this notion will lead to a number of interesting and fundamental
inequalities. Now we give some essential inequalities for general convex func-
tions.

Theorem 35. Let (X,M, µ) be a measure space such that µ(X) = 1, and
let J ⊂ R be an open interval. Let p : X → J be an integrable function, and
let f : J → R be a general convex with contact function. If there is x∗ ∈ R
such that gp(a,b)(f ′y(x)) ≥ x∗y for all y ∈ R, then∫

X
f(p)dµ ≥ 2f

(∫
X
p dµ

)
−max

{
f(a), f(b), g

(
f(a), f(b)

)}
(GN)

for every function g : f(J)2 → R for which f is a general convex with contact
function and for two arbitrary points a, b ∈ J .

Proof. Put t =
∫
X p dµ. Clearly t ∈ J . Then from the preceding Theorem

34a (inequality (23’)) we obtain

f(y) ≥ 2f(t) + x∗(y − t)−max
{
f(a), f(b), g

(
f(a), f(b)

)}
for all y ∈ J . Replacing y by p(x), and integrating over x ∈ X, we get thus
the following inequality∫
X
f(p)dµ− 2f(t) + max

{
f(a), f(b), g

(
f(a), f(b)

)}
≥ x∗

(∫
X
p dµ− t

)
= 0,
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which is equivalent to the preceding inequality (GN). The proof is complete.
�

As an immediate consequence of Theorem 33 and of the preceding proof of
Theorem 35, we are now in a position to formulate the following statement.

Theorem 36. Let (X,M, µ) be a measure space such that µ(X) = 1, and
let J ⊂ R be an open interval. Let p : X → J be an integrable function, and
let f : J → R be a general convex with tent function. Then the following
inequality holds ∫

X

∣∣∣∣f(p)− f
(∫

X
p dµ

)∣∣∣∣ dµ ≥
≥ f

(∫
X
p dµ

)
−max

{
f(a), f

(∫
X
p dµ

)
, g

(
f(a), f

(∫
X
p dµ

))}
for every function g : f(J)2 → R for which f is a general convex with tent
function and for an arbitrary point a ∈ J .

Proof. Put t =
∫
X p dµ. Clearly t ∈ J . Take a x∗ ∈ g(∂f(t)). Then from

inequality (GS) and by Theorem 33 for b = t and l = 0 we obtain∣∣∣f(y)− f(t)
∣∣∣ ≥ f(t) + x∗(y − t)−max

{
f(a), f(t), g

(
f(a), f(t)

)}
for all y ∈ J . Replacing y by p(x), and integrating over x ∈ X, we get thus
statement. The proof is complete. �

Analogous to the preceding inequalities we obtain directly the following
statements.

Theorem 37. Let J := [α, β] ⊂ R be an interval, let f : J → R be a general
convex with tent function and let L be a set of all function ψ : X → R (X
is a nonempty set). If A : L → R is a linear positive functional such that
A(1) = 1, then f(ψ) ∈ L implies that A(ψ) ∈ J for all ψ ∈ L, and

A
(∣∣∣f(ψ)− f(A(ψ))

∣∣∣) ≥ f(A(ψ))−max
{
f(a), f

(
A(ψ)

)
, g
(
f(a), f(A(ψ))

)}
for every function g : f(J)2 → R for which f is a general convex with tent
function and for an arbitrary point a ∈ J .

Proof. Let α ≤ ψ(t) ≤ β for t ∈ X, then we obtain that α = A(α) =
A(1 · α) ≤ A(ψ(t)) ≤ A(β) = β. This means that A(ψ) ∈ J . Since f is a
general convex with tent function on J , thus we obtain that inequality (GS)
holds for all z, x ∈ (α, β). If we take in (GS) z = ψ(t), b = x, λ = 0 and
x = A(ψ), and if we apply the functional A, we obtain statement. Also, for
points a and b similarly inequality holds. The proof is complete. �

Theorem 38. Let J ⊂ R be an open interval, let f : J → R be a general
convex with contact function and let L be a set of all function ψ : X → R
(X is a nonempty set). If A : L → R is a linear positive functional such
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that A(1) = 1, and if there is x∗ ∈ R such that gp(a,b)(f ′y(x)) ≥ x∗y for all
y ∈ R, then

A(f(ψ)) ≥ 2f(A(ψ))−max
{
f(a), f(b), g

(
f(a), f(b)

)}
(GN’)

for every function g : f(J)2 → R for which f is a general convex with contact
function and for two arbitrary points a, b ∈ J .
Proof. Since f is a general convex with contact function on J , from Theorem
34, we obtain that inequality (23’) holds. Therefore, if we take in (23’)
z = ψ(t) and x = A(ψ), and if we apply the functional A, we obtain

A(f(ψ)) ≥ 2f(A(ψ)) + x∗
(
A(ψ)−A(ψ)

)
−max

{
f(a), f(b), g

(
f(a), f(b)

)}
which is equivalent to the preceding inequality (GN’). The proof is complete.

�

On the other hand, as a directly consequence of the preceding statement,
we obtain the following statement.

Theorem 39. Let J := (α, β), let α < x1 ≤ · · · ≤ xn < β be real numbers
and let q1, . . . , qn be real numbers such that for k = 1, . . . , n

0 ≤
n∑
i=k

qi ≤
n∑
i=1

qi,

n∑
i=1

qi > 0.

If f : J → R is a general convex with contact function and if there is
x∗ ∈ R such that gp(a,b)(f ′y(x)) ≥ x∗y for all y ∈ R, then∑n

i=1 qif(xi)∑n
i=1 qi

≥ 2f

(∑n
i=1 qixi∑n
i=1 qi

)
−max

{
f(a), f(b), g

(
f(a), f(b)

)}
(SN)

for every function g : f(J)2 → R for which f is a general convex with contact
function and for two arbitrary points a, b ∈ J .

This inequality is an evidently Jensen’s type inequality. On the other
hand, a corresponding inequality for integrals will also given as an integral
analogue. First a very similarly inequality.

Theorem 40. Let D ⊂ Rn be a convex and open set, and let f : D → R
be a general convex with contact function. If there is x∗ ∈ Rn such that
gp(a,b)(f

′
y(x)) ≥ x∗y for all y ∈ R, then for every x1, . . . , xn ∈ D and for

every nonnegative real numbers q1, . . . , qn with
∑n

i=1 qi > 0, we have (SN).

Theorem 41. Let (X,M, µ) be a measure space and let J ⊂ R be an open
interval. Let p : X → J and q : X → [0,+∞] be integrable functions
such that the product pq is integrable and

∫
X q dµ > 0. If f : J → R is

a general convex with contact function and if there is x∗ ∈ R such that
gp(a,b)(f

′
y(x)) ≥ x∗y for all y ∈ R, then∫

X q(f ◦ p)dµ∫
X q dµ

≥ 2f

(∫
X pq dµ∫
X q dµ

)
−max

{
f(a), f(b), g

(
f(a), f(b)

)}
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for every function g : f(J)2 → R for which f is a general convex with contact
function and for two arbitrary points a, b ∈ J .

8.5. Introduction and history of majorizations. G. H. Hardy, J. E.
Littlewood and G. Pólya proved in 1929 the following majorization principle
for convex functions which reads as follows.

Theorem H. Let J ⊂ R be an interval, let xi, yi ∈ J (i = 1, . . . , n) be real
numbers such that fulfilling

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,(1a)
k∑
i=1

xi ≤
k∑
i=1

yi (k = 1, . . . , n− 1),

n∑
i=1

xi =

n∑
i=1

yi.(2a)

If f : J → R is a convex function, then the following inequality holds in
the adequate form as

n∑
i=1

f(xi) ≤
n∑
i=1

f(yi).(H)

Conversely, if for some xi, yi ∈ J (i = 1, . . . , n) such that (1a) holds, and
inequality (H) is fulfilled for every convex function, then relations (2a) hold.

In 1932 J. K a r a m a t a rediscovered Theorem H. Very similar to this statement was
proved in 1949 by M. Tomić. We y l in 1949 in the same as M. T o m i ć has obtained
similar statement for xi > 0 and yi > 0, while M. Tomić did not require these restrictions.
Practically, M. Tomić proved that a similar result contains in a certain sense Theorem H.
He gave a geometrical proof for this, basing it on Gauss’ theorem about the centroid.

For other generalizations of Theorem H of G. Pólya, L. F u c h s, T. P o p o v i c i u, K.
F a n and some other see book of D. S. M i t r i n o v i ć: Analytic Inequalities (Sprin-ger-
Verlag, Berlin and New York, 1970.). In this section we consider the preceding problems
for general convex functions.

With the help of the preceding facts in this part we present a new characterization of
general convexity as a majorization principle. Second characterization of general convexity
we give as an integral analogue of majorization principle without proof.

8.6. Inequalities alternative for general convexity. In this section we
give some inequalities which are similar to well known inequality of Hardy-
Littlewood-Pólya, i.e., similar with Theorem H.

We note that the preceding statements which are based upon it suggest
the following question: what conditions must be satisfied by the two sets of
numbers

x1, x2, . . . , xn and y1, y2, . . . , yn

in order that some inequality should be true for every function which is
general convex with contact in an interval including all the numbers?

We are now in a position to formulate the following fundamental statement
for general convex functions.
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Theorem 42. (Majorization principle). Let J ⊂ R be an interval, let
xi, yi ∈ J (i = 1, . . . , n) be real numbers such that fulfilling

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,(24)

and let p1, . . . , pn ∈ R be real numbers such that the following relations hold
k∑
i=1

piyi ≤
k∑
i=1

pixi (k = 1, . . . , n− 1),
n∑
i=1

pixi =
n∑
i=1

piyi.(25)

If f : J → R is a general convex with circled contact function for some
function g : f(J)2 → R, then either

n∑
i=1

pif(yi) ≤ 2

n∑
i=1

pif(xi)−
n∑
i=1

pi max
{
f(xi), f(yi), g

(
f(xi), f(yi)

)}
(A)

or
n∑
i=1

pif(xi) ≥ 2
n∑
i=1

pif(yi)−
n∑
i=1

pi max
{
f(xi), f(yi), g

(
f(xi), f(yi)

)}
.(B)

Conversely, if pi ≥ 0 (i = 1, . . . , n), and if for some xi, yi ∈ J (i =
1, . . . , n) such that (24) holds and inequality (A) is fulfilled for every general
convex with circled contact function f : J → R, then relations (25) hold.

Moreover, if pi ≤ 0 (i = 1, . . . , n) and if for some xi, yi ∈ J (i = 1, . . . , n)
such that (24) holds and inequality (B) is fulfiled for every general convex
with circled contact function f : J → R, then relations (25) hold.

On the other hand, is connection with the preceding statement and The-
orem 20 we are now in a position to formulate our main general statement.

Theorem 43. (Inequalities of alternative). Let J ⊂ R be an interval, let
xi, yi ∈ J (i = 1, . . . , n) be real numbers such that fulfilling

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn,(26)

and let p1, . . . , pn ∈ R be real numbers such that the following relations hold
k∑
i=1

piyi ≤
k∑
i=1

pixi (k = 1, . . . , n− 1),
n∑
i=1

pixi =
n∑
i=1

piyi.(27)

If f : J → R is a general convex with contact function for some function
g : f(J)2 → R, then either

n∑
i=1

pif(yi) ≤ 2

n∑
i=1

pif(xi)−
n∑
i=1

pi max
{
f(a), f(b), g

(
f(a), f(b)

)}
(N)

or
n∑
i=1

pif(xi) ≥ 2
n∑
i=1

pif(yi)−
n∑
i=1

pi max
{
f(a), f(b), g

(
f(a), f(b)

)}
(M)
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for arbitrary a, b ∈ J . Conversely, if pi ≥ 0 (i = 1, . . . , n), and if for some
xi, yi ∈ J (i = 1, . . . , n) such that (26) holds and inequality (N) or (M)
is fulfilled for every general convex with contact function f : J → R, then
relations (27) hold.

In further let the function x 7→ f(x) be nonnegative and integrable on
(0, 1) so that it is measurable and finite almost everywhere and let µ(s) be
the measure of the set on which f(x) ≥ s. The function x 7→ f∗(x) which
is inverse to µ is called the decreasing rearrangement of f . If x, y ∈ Ll(0, 1),
we say that y majorizes x, in writing x ≺ y, if∫ s

0
x∗(t)dt ≤

∫ s

0
y∗(t)dt for 0 < s < 1,∫ 1

0
x(t)dt =

∫ 1

0
y(t)dt.

We shall now give an integral inequality, which is connected with the ma-
jorization of functions, and which is analogue the preceding result, because
without proof. We note G. H. Hardy, J. E. Littlewood and G. Pólya also
proved an integral analogue of the inequality which appears in Theorem H.

Theorem 43a. (Integral analogue of majorization). The following inequal-
ity of the form∫ 1

0
f(y(t))dt ≤ 2

∫ 1

0
f(x(t))dt−max

{
f(a), f(b), g

(
f(a), f(b)

)}
or ∫ 1

0
f(x(t))dt ≥ 2

∫ 1

0
f(y(t))dt−max

{
f(a), f(b), g

(
f(a), f(b)

)}
holds for some function g : [0, 1]2 → R, for arbitrary points a, b ∈ [0, 1], and
for any general convex with contakt function f if and only if x majorizes y.

With this preceding statements we precision, correction and expand our
the former majorization principles for general convex with contact functions.

8.7. Some further consequences. On the other hand, if to teasing on the
convex class of functions taking

max
{
f(xi), f(yi), g

(
f(xi), f(yi)

)}
= λf(xi) + (1− λ)f(yi)(C)

for arbitrary λ ∈ [0, 1] in Theorem 42, then from inequalities (A) and (B)
we obtain the preceding Theorem H of Hardy-Littlewood-Pólya.

This means that Theorem 42 extends Theorem H to general convex func-
tions. Also, from Theorem 42 as an immediate consequence we obtain the
following statement for quasiconvex functions.

In this sense, a function f : D → R, where D is a convex subset of Rn, is
said to be quasiconvex if

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y)

}
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for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that set of all
quasiconvex functions can be a proper subset of the set all general convex
with circled contact functions.

As an immediate application of the preceding Theorem 42 we obtain the
following result.

Theorem 42a. (Majorization of quasiconvexity). Let J ⊂ R be an open
interval, let xi, yi ∈ J (i = 1, . . . , n) be real numbers such that fulfilling (26)
and (27). If f : J → R is an increasing quasiconvex function, then either

n∑
i=1

f(yi) ≤ 2
n∑
i=1

f(xi)−
n∑
i=1

max
{
f(xi), f(yi)

}
(A’)

or
n∑
i=1

f(xi) ≥ 2
n∑
i=1

f(yi)−
n∑
i=1

max
{
f(xi), f(yi)

}
.(B’)

Conversely, if for some xi, yi ∈ J (i = 1, . . . , n) such that (26) holds and
inequality (A’) is fulfilled for every quasiconvex function f : J → R, then
relations (27) hold.

Proof. Taking g(f(xi), f(yi)) = max{f(xi), f(yi)} in inequalities (A) and
(B) from Theorem 42 we obtain directly this statement for quasiconvex
functions.

In connection with the preceding facts, since inequality (N) or (M) for
a ≤ xi ≤ b (i = 1, . . . , n) and pi = 1 (i = 1, . . . , n) is equivalent only to
inequality (M), thus we can Theorem 43 write in the following equivalent
form in this case. �

Theorem 43b. Let J ⊂ R be an open interval and let xi, yi ∈ J (i =
1, . . . , n) be real numbers such that fulfilling

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn.(28)

Then, a necessary and sufficient condition in order that
n∑
i=1

f(xi) ≥ 2
n∑
i=1

f(yi)− nmax
{
f(a), f(b), g

(
f(a), f(b)

)}
(Ma)

holds for every general convex function f : J → R which is in contact
with function g : f(J)2 → R and for arbitrary a, b ∈ J (a ≤ xi ≤ b for
i = 1, . . . , n), is that

k∑
i=1

yi ≤
k∑
i=1

xi (k = 1, . . . , n− 1),

n∑
i=1

yi =

n∑
i=1

xi.(29)
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As an immediate consequence of Theorem 42, directly, we obtain the
following inequality. Indeed, putting in (B) y1 = · · · = yn = n−1

∑n
i=1 xi we

get
n∑
i=1

f(xi) ≥(Gc)

≥ 2nf

(
1

n

n∑
i=1

xi

)
−

n∑
i=1

max

{
f(xi), f

(
1

n

n∑
i=1

xi

)
, g

(
f(xi), f

(
1

n

n∑
i=1

xi

))}
for every general convex function f : J → R (J ⊂ R is an open interval)
which is in circled contact with function g : f(J)2 → R.

This inequality is a generalization of Jensen’s inequality for convex func-
tions. Indeed, if to teasing on the convex class of functions taking (C), then
from (Gc) we get Jensen’s inequality.

The following statement is very similar to Theorem 42.

Theorem 42b. Let J ⊂ R be an open interval, let xi, yi ∈ J (i = 1, . . . , n)
be real numbers such that fulfilling (28) and such that

k∑
i=1

yi ≤
k∑
i=1

xi (k = 1, . . . , n).(I)

If f : J → R is an increasing general convex with circled contact function
for some function g : f(J)2 → R then either

n∑
i=1

f(yi) ≤ 2

n∑
i=1

f(xi)−
n∑
i=1

max
{
f(xi), f(yi), g

(
f(xi), f(yi)

)}
.(Aa)

or
n∑
i=1

f(xi) ≥ 2
n∑
i=1

f(yi)−
n∑
i=1

max
{
f(xi), f(yi), g

(
f(xi), f(yi)

)}
.(Bb)

Conversely, if for some xi, yi ∈ J (i = 1, . . . , n) such that (28) holds and
inequality (Aa) is fulfilled for every increasing general convex with circled
contact function f : J → R, then inequalities (I) hold.

This proof of this statement is totally analogous to the preceding proof of
Theorem 42. The following statement is very similar to Theorem 43b.

Theorem 43c. Let J ⊂ R be an open interval and let xi, yi ∈ J (i =
1, . . . , n) be real numbers such that fulfilling

x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn.(30)

Then, a necessary and sufficient condition in order that
n∑
i=1

f(xi) ≥ 2
n∑
i=1

f(yi)− nmax
{
f(a), f(b), g

(
f(a), f(b)

)}
(Ma)
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holds for every increasing general convex function f : J → R which is in
contact with function g : f(J)2 → R and for arbitrary a, b ∈ J (a ≤ xi ≤ b
for i = 1, . . . , n), is that

k∑
i=1

yi ≤
k∑
i=1

xi (k = 1, . . . , n).(I)

The proof of this statement is very similar and totally analogous to the
preceding proof of Theorem 43.

8. Further applications. In this part we give some consequences of the preceding
results of majorizations in the following forms:

1. (Extension of Lim’s inequality). Let x > 0, y > 0, z > x+ y be real numbers, and
let f : R0

+ → R be a general convex with contact function. Then

f(x) + f(y + z) ≥ 2
[
f(x+ y) + f(z)

]
− 2 max

{
f(a), f(b), g

(
f(a), f(b)

)}
for every function g : f(R0

+)2 → R which is in contact with f and for arbitrary points
a, b ∈ R0

+ (a ≤ x, y + z ≤ b).
2. (Extension of Petrović’s inequality). Let J ⊂ R be an open interval, and let

f : J → R be a general convex with contact function. If x1, . . . , xn ∈ J , then the
following inequality holds

f(x1 + · · ·+ xn) + (n− 1)f(0) ≥

≥ 2
[
f(x1) + · · ·+ f(xn)

]
− nmax

{
f(a), f(b), g

(
f(a), f(b)

)}
for every n ∈ N, for every function g : f(J)2 → R which is in contact with f and for
arbitrary a, b ∈ J (a ≤ x1 + · · ·+ xn, 0 ≤ b).

3. (An inequality of general convexity). Let J ⊂ R be an open interval, and let
f : J → R be a general convex with contact function. Then

f(x) + f(y) + f(z) + 3f
(x+ y + z

3

)
≥

≥ 4
[
f
(x+ y

2

)
+ f

(y + z

2

)
+ f

(x+ z

2

)]
− 6 max

{
f(a), f(b), g

(
f(a), f(b)

)}
for every function g : f(J)2 → R which is in contact with f and for arbitrary points
a, b ∈ J (a ≤ x, y, z ≤ b).

Figure 7 Figure 8

4. (Hermite-Hadamard type inequalities). Let J ⊂ R be an open interval, let f :
J → R be a general convex with contact function, and let there exists x∗ ∈ R such that
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gp(a,b)(f
′
y(x)) ≥ x∗y for every y ∈ R. If a < b (a, b ∈ J) then

2f

(
a+ b

2

)
−max

{
f(λ), f(ρ), g(f(λ), f(ρ))

}
≤ 1

b− a

∫ b

a

f(x)dx ≤

≤ max
{
f(a), f(b), g(f(a), f(b))

}(Tm)

for every function g : f(J)2 → R under which f is a general convex with contact function,
and for two arbitrary points λ, ρ ∈ J . Also, then

2f

(
a+ b

2

)
−max

{
f(λ), f(ρ), g(f(λ), f(ρ))

}
≤ 1

(b− a)2

∫ b

a

∫ b

a

f
(x+ y

2

)
dxdy(31)

On the other hand, if f : J → R (J ⊂ R is an open interval) is a convex functional and
if a < b (a, b ∈ J), then by D r a g o m i r [1992] we have

f

(
a+ b

2

)
≤ 1

(b− a)2

∫ b

a

∫ b

a

f
(x+ y

2

)
dxdy ≤ 1

b− a

∫ b

a

f(x)dx.

5. (Connection of convexity and general convexity). We notice that the set of all
convex and quasiconvex functions can be a proper subset of the set of all general convex
functions. See Figs. 7, 8, 9, 10.

Let GK(J) be class of all general convex functions with contact and let K(J) be class
of all convex functions on an open interval J ⊂ R.

Figure 9

Theorem 44 (Relation of GK(J) and K(J))). Let J ⊂ R be an open interval, let
xi, yi ∈ J (i = 1, . . . , n) be are real numbers such that (26), and let p1, . . . , pn ∈ R be
nonnegative numbers such that (27). Then for every convex function f : J → R the
following inequality holds

n∑
i=1

pif(yi) ≤
n∑
i=1

pif(xi)(Kr)

if and only if for every general convex function with contact f : J → R the following
inequality holds in the form as

n∑
i=1

pif(xi) ≥ 2

n∑
i=1

pif(yi)−

(
n∑
i=1

pi

)
max

{
f(a), f(b), g(f(a), f(b))

}
(N)

for every function g : f(J)2 → R under which f is a general convex function with contact
and for arbitrary two points a, b ∈ J (a ≤ xi ≤ b for i = 1, . . . , n).

The proof of this statement directly it follows from Theorems H and 43. For further
facts see: T a s k o v i ć [2001].
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Figure 10

We notice, if f : J → R (J ⊂ R is an open interval) is a convex function and if a < b
(a, b ∈ J), then the following inequalities hold in the form as

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,(H)

well-known as Hermite-Hadamard inequalities (or only as Hadamard inequality).
For history of inequalities (H) see: M i t r i n o v i ć-P e č a r i ć-F i n k [1993], P i c a r d
[1905], J o r d a n-M a n s i o n [1901], B e c k e n b a c h [1948], F e j é r [1906], and
Ta s k o v i ć [2001].

6. (Inequalities for means). Let F be a strictly monotonic function on an interval
J ⊂ R. let p1, . . . , pn be nonnegative real numbers such that p1 + · · · + pn > 0, and let
a1, . . . , an ∈ F (J) be arbitrary points. The expression

Mn(F ; a, p) = F

(∑n
i=1 piF

−1(ai)∑n
i=1 pi

)
.(25)

is a called a quasiarithmetic weighted mean of a1, . . . , an with the weights p1, . . . , pn.
In (25) and in the sequel a stands for (a1, . . . , an) and p stands for (p1, . . . , pn).

Theorem 45. Let J ⊂ R be an open interval, and let the functions F,G :
J → R be continuous strictly monotonic F (J) = G(J), and let the function
G−1(F ) be general J-convex. If G is a decreasing function, then there is a
function d : Jn → J such that

Mn(F ; a, p) ≥ min
{
a1, . . . , an, G

(
d(G−1(a1), . . . , G

−1(an))
)}

(32)

for every n ∈ N, for all a1, . . . , an ∈ F (J), and for all nonnegative numbers
p1, . . . , pn such that p1 + · · ·+ pn > 0. If G is an increasing function , then
there is a function g : Jn → J such that

Mn(F ; a, p) ≤ max
{
a1, . . . , an, G

(
g(G−1(a1), . . . , G

−1(an))
)}

(33)

for every n ∈ N, for all points a1, . . . , an ∈ F (J), and for arbitrary numbers
p1, . . . , pn ∈ R0

+ such that p1 + · · ·+ pn > 0.

We will give one more generalization of the inequality between means.
Let F be a strictly monotonic function on an interval D ⊂ R, let n ∈ N,
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let I be a subset of {1, . . . , n}, let a1, . . . , an ∈ F (D), and let p1, . . . , pn ≥ 0
such that

∑
i∈I pi > 0. If H : F (D)→ R is a continuous function, put

α(H;F ; a, p, I) = H ◦ F
(∑

i∈I piF
−1(ai)∑

i∈I pi

)
.(34)

With this notation, and under the conditions specified, we have the fol-
lowing statement.

Theorem 46. (General convexity of index set). If the function F is contin-
uous, the function H(F ) is general J-convex, and if I, J are disjoint subset
of {1, . . . , n}, then there is a function g : H(F )2 → R such that

α(F, I ∪ J) ≤ max
{
α(F, I), α(F, J), g(α(F, I), α(F, J))

}
(35)

where α(F, I) = α)H,F ; a, p, I) for fixed a and p. If H(F ) is a general
J-concave function, then there is a function d : H(F )2 → R such that

α(F, I ∪ J) ≥ min
{
α(F, I), α(F, J), d(α(F, I), α(F, J))

}
(36)

7. (A new Method for Inequalities, T a s k o v i ć [2001]). Today inequalities
play a significiant role in all fields of mathematics, and they present a very active and
attractive field of research.

In this part we give a method for proving general convex type inequalities. We consider
our general method (via a fixed point) on the following inequality.
Hölder-Young inequality. Let x, y ∈ R0

+ and 1 < p < +∞ such that the following
equality holds 1/p+ 1/q = 1. Then the following inequality holds in the form as

x1/py1/q ≤ x

p
+
y

q
,(37)

with equality holding if and only if x = y.
Method of Proof. In Theorem 2.2 (or Lemma 2.1a) we may choose for the function
g : P → P (P := R+) that is g(t) = (x1/py1/q)2/t, where ξ = x1/py1/q is a fixed point of
g. Then, from Lemma 2.1a, we obtain

ξ = x1/py1/q ≤ max
{
λ, g(λ)

}
(38)

for arbitrary λ ∈ R+. Thus, for λ = x/p+y/q we have two cases. First, if max{λ, g(λ)} =
x/p+ y/q, then inequality (37) holds, If not, then from (38) we obtain

ξ = x1/py1/q ≤ g
(
x

p
+
y

q

)
=

(x1/py1/q)2

x

p
+
y

q

.

But, this is not possible by Theorem 2.2, since g is a decreasing function, which tends
to zero. Thus, the inequality (37) holds.
Annotations. The method of the preceding proof of Hölder-Young inequality can be
used for all general convex type inequalities by: Hadamard, Jensen, Abel, Hölder, Cauchy,
Young, Karamata, Grüss, and many others. See: M i t r i n o v i ć [1970], M i t r i n o v i ć
et al. [1993] and Ta s k o v i ć [2001].

Also, the preceding method is to be based on the following result.
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Theorem 47. (Equality for Functionals, T a s k o v i ć [1986b]). Let S be a nonempty
set and let f, g : S → S be two mappings. If A : f(S) × g(S) → R+, then the following
fact holds in the form as

A(f, g) = max
λ∈R+

min

{
λ,

(A(f, g))2

λ

}
= min
λ∈R+

max

{
λ,

(A(f, g))2

λ

}
.(G)

The proof of this equality may be found in T a s k o v i ć [1986b] and M i t r i n o v i ć
et al. [1993]. Also see: T a s k o v i ć [2001].

We notice that the following consequence of (G) has many applications in the theory
of inequalities in the forma as:

min

{
λ,

(A(f, g))2

λ

}
≤ A(f, g) ≤ max

{
λ,

(A(f, g))2

λ

}
(G’)

for arbitrary λ ∈ R+. Main applications of inequality (G’) are for obtained Grüss’s and
Karamata’s inequalities. See: M i t r i n o v i ć et al. [1993] and Ta s k o v i ć [2001].3

In connection with the preceding facts, from Theorem 47, we have the following state-
ment as a new double inequality in the form as:

Theorem 48. (Tasković, [2001]). Let X be a real linear space of functions defined on an
interval J ⊂ R, and let the functions f , g, fg ∈ X satisfying 0 < m ≤ f(x) ≤ M and
0 < r ≤ g(x) ≤ R for every x ∈ J . If A : X → R is a linear functional such that A(1)−1,
then

1

λ(m, r,M,R)
≤ A(fg)

A(f)A(g)
≤ λ(m, r,M,R)(39)

for every λ ≥ ξ(f, g), where ξ(f, g) is a fixed point of the function in the following adequate
form as ψ(t) = t−1[A(fg)2] (AfAg)−1 : R+ → R+.

We notice in the special case of the preceding inequalities we obtain a result of L u p a ş
[1978] for λ = K2, where

K =

√
mr +

√
MR√

mR+
√
rM

.(40)

On the other hand, the inequalities (39) are a directly extension of the following state-
ment in the form as:

Theorem 49. (Karamata, [1948]). Let f and g be are integrable functions on (0, 1) such
that 0 < m ≤ f(x) ≤M and 0 < r ≤ g(x) ≤ R for every 0 ≤ x ≤ 1. Then

1

K2
≤

∫ 1

0
f(x)g(x)dx∫ 1

0
f(x)dx

∫ 1

0
g(x)dx

≤ K2(41)

for the constant K defined in (40). In this case, the constant K is the best possible.

Further, we can to write down, that from Theorem 47 we obtain the following general
inequalities as an extension of the former results.

Theorem 50. (Global Inequalities, Tasković [1994]). Let X be a real linear space of real
functions defined on an interval J ⊂ R, and let the functions f, g ∈ X and the functional
F : X → R satisfying m ≤ f(x) ≤M (m 6= M) and 0 < r ≤ F (g) ≤ R. If B : X×X → R,
then

mrD(f) +Mrd(f)

RD(f) + rd(f)
≤ B(f, g) ≤ MRd(f) +mrD(f)

Rd(f) + rD(f)
.(Š)

3Historical facts. The inequality (37) was first proved by O t t o-H ö l d e r (1859-
1937) in 1889 for series. The extension to integrals is due to F r y g e s R i e s z. For other
facts see: Y o u n g [1912] and M i t r i n o v i ć et al. [1993].
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where the following conditions hold: D(f) := M−F (f) ≥ d(f) := F (f)−m and R2d(f) ≥
r2D(f) or D(f) ≤ d(f) and R2D(f) ≥ r2d(f).

In the special case of inequalities (Š) we obtain well-known so-called Karamata’s
inequalities in the following form.

Theorem 51. (Karamata, [1933]). Let f(x) and g(x) be are integrable functions on (0, 1)
and let m ≤ f(x) ≤M for every x ∈ [0, 1], then the following inequalities hold in the form
as

λm(M − µ) +M(µ−m)

λ(M − µ) + (µ−m)
≤
∫ 1

0
f(x)g(x)dx∫ 1

0
g(x)dx

≤ m(M − µ) + λM(µ−m)

(M − µ) + λ(µ−m)
(K)

for every function 0 < a ≤ g(x) ≤ λa (λ > 1) with the x ∈ [0, 1], where µ is the integral
of the function f(x) on [0, 1].

We notice that an extension of inequalities (K) is given by L u p a ş [1978] for linear
positive functionals F : X → R with F (1) = 1. Also, in connection with this, see: F i n k
[1977], P ó l y a-S z e g ö [1925], and P e č a r i ć-S a v i ć [1984].

Further, as a special case of the Global Inequalities (Š), we have directly the following
statement via constant K in (40), in the form as:

Corollary 8. (Tasković, [2001, p. 597]). Let X be a real linear space of real functions
defined on interval J ⊂ R, let F : X → R satisfying 0 < m ≤ F (f) ≤ M and 0 < r ≤
F (g) ≤ R for f, g ∈ X. Then for the constant K in (40) and B : X ×X → R+, then the
following inequalities hold

1

K2
≤ B(f, g)

F (f)
≤ K2.(Š’)

where the following conditions hold: M −F (f) ≥ F (f)−m and R2(F (x)−m) ≥ r2(M −
F (f)) or M − F (f) ≤ F (f)−m and R2(M − F (f)) ≥ r2(F (f)−m).

8. (Grüss’ Inequality). Further let ϕ ≤ f(x) ≤ φ, γ ≤ g(x) ≤ Γ for every x ∈ [a, b],
where ϕ, φ, γ and Γ are given real constants. In 1935 G. G r ü s s stated the hypothesis
that ∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

(b− a)2

∫ b

a

f(x)dx

∫ b

a

g(x)dx

∣∣∣∣ ≤ 1

4
(φ− ϕ)(Γ− γ).(Gs)

We notice, also in 1935 G. G. G r ü s s proved that (Gs) is valid and that the constant
1/4 is the best possible. For furhter facts see: L a n d a u [1935], H a r d y [1936], K a r a -
m a t a [1948], K n o p p [1935], F e m p l [1965], and M i t r i n o v i ć-P e č a r i ć-F i n k
[1993].

In connection with the preceding facts, applying Theorem 50 on the functional B(f, g)
we directly obtain the following inequality in the form as:

B(f, g) =

∣∣∣∣∫ 1

0

f(x)g(x)dx−
∫ 1

0

f(x)dx

∫ 1

0

g(x)dx

∣∣∣∣ ≤ RMd(f) + rmD(f)

Rd(f) + rD(f)
.

9. Representation of general convexity

This section is continue the study and considerations of the general convex functions,
which are introduced in the former paper by Ta s k o v i ć: Math. Japonica, 37 (1992),
367-372.
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The following main result is proved: Every continuous general convex with contact (for
some continuous function g : f(I)2 → R, I := [a, b]) function f : [a, b]→ R is the uniform
limit of the sequence

ψn(x) =

n∑
k=0

pkω(x, xk) for n = 1, 2, . . .(S)

where ω(x, xk) = (x − xk)+ or ω(x, xk) = |x − xk|, where xk ∈ [a, b] for k = 0, 1, . . . , n
and where the pi ∈ R (i = 0, 1, . . . , n) satisfies the following condition

2pj −

j−1∑
k=0

pk −
n∑
k=j

pk

 ≥ 0 (j = 1, . . . , n− 1).(I)

Here x+ = 0 if x < 0 and x+ = x if x > 0. Also, every function of the sequence (S) is
a general convex with contact function.

9.1. Approximation of general convex functions. In this section we
continue the study and considerations of the general convex functions. In
this sense we note that a number of well known classical statements in 1916 of
Galvani, Hyers-Ulam in 1952, Toda in 1936 and Popoviciu in 1965 consider
the problem of approximation and representation of convex functions by
picewise affine functions or as some stability statement.

In this part the problem of approximation and representation of general
convex functions is studied and considered.

We notice that a large number of statements from the theory of general
convex functions are of the following form: Af is a general convex function,
where f is a general convex function and A a given linear operator. In this
paper we consider this problem and his applications too.

In this section the problem of approximation and representation of general
convex functions is considered. In this sense we are now in a position to
formulate main statement as a solution of the preceding problem of represen-
tation. First we note that the following fact holds.

Lemma 5. Let D ⊂ Rn be a convex and open set, and let fn : D → R
(for n ∈ N) be a sequence of general convex functions for some continuous
function g : fn(D)2 → R. If the sequence {fn}n∈N converges in D to a finite
function f , then f is a general convex function for the continuous function
g : f(D)2 → R.

In connection with the preceding Lemma 5, we notice, moreover, the
convergence is uniform on any closed subinterval I of D.

In this section we shall introduce some notations. In this sense, let −∞ <
a < b < +∞ and let I := [a, b]. We shall considered general convex functions
which are, de facto, continuous on open interval (a, b).

Theorem 52. (Representation of general convexity). Every continuous
gene-ral convex with contact (for some continuous function g : f(I)2 → R)
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function f : [a, b]→ R is the uniform limit of the sequence

ψn(x) =

n∑
k=0

pkω(x, xk) for n = 1, 2, . . .(S)

where ω(x, xk) = (x − xk)+ or ω(x, xk) = |x − xk|, where xk ∈ [a, b] for
k = 0, . . . , n and where the pi ∈ R (i = 0, . . . , n) satisfies the following
condition

2pj −

j−1∑
i=0

pi −
n∑
i=j

pi

 ≥ 0 (j = 1, . . . , n− 1).(I)

Here x+ = 0 if x < 0 and x+ = x if x > 0. Also, every function of the
sequence (S) is a general convex with contact function.

We notice, if f : [a, b] → R is a convex function, then a necessary and
sufficient condition for {ψn}n∈N to be convex is that pj > 0 (j = 0, . . . , n).
Precisely, representation of a convex function on [a, b] is the uniform limit
of the sequence (S) where pi > 0 (i = 0, . . . , n). This statement was proved
in 1936 by Toda and in 1965 by Popoviciu. First the coeficients pk (k =
0, . . . , n) are explicitly given, while in 1965 the uniform convergence of the
sequence {ψn}n∈N was proved.
Proof of Theorem 52 Let the interval [a, b] be divided by equidistant
σn(I) : a = x0 < x1 < · · · < xn = b division, i.e., let

xk = a+ kh, h =
b− a
n

for k = 0, 1, . . . , n.

Then, if the sequence of functions {ψn}n∈N defined by the following equal-
ity

ψn(x) =

n∑
k=0

pk|x− xk|,

interpolate the function f in points xk i.e., if ψn(xk) = f(xk) for k =
0, 1, . . . , n we obtain the following equalities

ψn(xj) = h
n∑
k=0

|j − k|pk (0 ≤ j ≤ n).

Let tj (i = 1, . . . , n− 1) denoted the following sum in form

2pj −

j−1∑
i=0

pi −
n∑
i=j

pi

 for j = 1, . . . , n− 1.

Thus, since f is a general convex with contact function from Theorem 19
we obtain the following sequences of equalities and inequalities for xj−1 <
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xj < xj+1 (j = 1, . . . , n− 1):

0 ≤ f(xj+1)− 2f(xj) + max{f(xj − 1), f(xj+1), g(f(xj−1), f(xj+1))}
xj+1 − xj

−

−f(xj)− 2f(xj−1) + max{f(xj−1), f(xj+1), g(f(xj−1), f(xj+1))}
xj − xj−1

= · · ·

· · · = 2pj −

j−1∑
k=0

pk −
n∑
k=j

pk

 := tj for j = 1, . . . , n− 1.

This means that tj ≥ 0 (j = 1, . . . , n − 1). If x ∈ [a, b], then there is
a segment [xk, xk+1] (k = 0, . . . , n − 1) such that x ∈ [xk, xk+1]. If ωf (δ)
denoted the modulus of continuity of the function f on segment with distance
d, then since ψn(x) to coincide with the affine function in points (xk, f(xk))
and (xk+1, f(xk+1)), we obtain the following equalities and inequalities:

|f(x)− ψn(x)| =
∣∣∣∣f(x)− f(xk)−

x− xk
xk+1 − xk

(
f(xk+1)− f(xk)

)∣∣∣∣ ≤
≤ |f(x)− f(xk)|+

x− xk
xk+1 − xk

∣∣∣f(xk+1)− f(xk)
∣∣∣ ≤ 2ωf

(
b− a
n

)
.

Since ωf
(
b− a
n

)
converges to zero when n→∞ we have that {ψn(x)}n∈N

converges uniformly toward the function f , which on the basis Lemma 5, is
a general convex function. The proof is complete.

In connection with the preceding proof of Theorem 52, we notice, that
directly the following statement holds.

Theorem 53. (Polygonal line). Let xk ∈ [a, b] for k = 0, 1, . . . , n and let
pi ∈ R (i = 0, . . . , n), then the polygonal line in the following form

ψ(x) =

n∑
k=0

pk|x− xk|(42)

is a general convex with contact function (for some continuous function g :
f(I)2 → R) if and only if the preceding coeficients satisfies the following
condition

2pj+1 −

 j∑
i=0

pi −
n∑

i=j+1

pi

 ≥ 0 (j = 0, . . . , n− 2).(I’)

We notice that condition (I’), de facto, equality with condition (I) in the
preceding Theorem 52. Only, in this case, we begin the proof in points
xj < xj+1 < xj+2 for (j = 0, . . . , n− 2). If pk ≥ 0 (k = 1, . . . , n− 1) in (42),
then ψ(x) is a convex function, as and reverse, if ψ(x) is a convex function,
then pk ≥ 0 (k = 1, . . . , n− 1).
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9.2. Groupoidity of general convexity. In this section we considered,
in connection with the preceding results, the following question: when the
following statement holds

f ∈ GK(I) implies Af ∈ GK(I)

for every function f and a linear operator A, where GK(I) denoted the set
of all continuous general convex with contact functions (for some continuous
function g : f(I)2 → R) on I := [a, b].

In this sense, we shall denote by C[a, b] a set of all functions continuous
on the segment [a, b] (−∞ < a < b < +∞) and by S(D) one of the normed
subspaces of the space all real functions defined on D ⊂ R. It is obvious
from the foregoing that the inclusion GK(I) ⊂ C[a, b] is valid (because we
consider only those general convex functions which are continuous). Let
ω(t, c) := |t− c|. We continue with the following fact.

Theorem 54. (Groupoidity of operators). Let us assume that the operator
A : C[a, b] → S(D) is linear and continuous. If real numbers pk (k =
0, 1, . . . ,m) satisfies inequality

∑m
k=0 pk ≥ 0, then the following statement

f ∈ GK(I) implies Af ∈ GK(I),(43)

for every function t 7→ f(t) is valid if and only if the following fact holds

Aω(t, c) ∈ GK(I) for every c ∈ I.(44)

Proof. Sufficiency. Statement (43) holds for any continuous general convex
function f (for some continuous function g : f(I)2 → R) on interval I. Since
ω(t, c) ∈ GK(I) for every c ∈ I on the basis of statement (43) the validity
of (44) follows.

Necessity. Let us assume that condition (44) is valid and let us prove that
the statement (43) holds true, for every function f ∈ GK(I). If f ∈ GK(I),
then on the basis of Theorem 52, there exist tk ∈ I and pk ∈ R (k =
0, 1, . . . , n) with property (I) such that the sequence {ψn}n∈N of the form
(S) satisfies condition ‖ψn− f‖ → 0 (n→∞). Since A, by the assumptions
of the statement, is a continuous operator, we have the following relation
that

‖Aψn −Af‖ → 0 (n→∞)

is valid for every function f ∈ GK(I). On the other hand, since the operator
A is linear, in virtue of (S) we have

Aψn =

n∑
k=0

pkAω(t, tk).(45)
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Also, since Aω(t, c) ∈ GK(I) for every c ∈ I, thus we obtain, from Theo-
rem 52 with condition (I), that

Aω(t, c) = lim
n→∞

n∑
k=0

pkω(t, tk),(46)

for every c ∈ I. To multiply (46) with pk and to sum left and right sides,
from (45), (46) and Theorem 52, we obtain

Aψm =

(
m∑
k=0

pk

)
lim
n→∞

n∑
k=0

pkω(t, tk) =

(
m∑
k=0

pk

)
Aω(t, c).(47)

Since
∑m

k=0 pk ≥ 0, (47) means that {Aψm}m∈N is a sequence of general
convex with contact functions (for some continuous function g : f(I)2 →
R) for every m ∈ N. From Lemma 5 and the preceding facts we have
Af ∈ GK(I) for every general convex with contact function f (for some
continuous function g : f(I)2 → R). This means that (43) holds. The proof
is complete. �

It is well known that a large number of theorems from the theory of convex
functions are of the form Af ≥ 0 where x 7→ f(x) is a convex function and A
is a given linear operator. Also this holds and for a large number of theorems
from the theory of general convex functions. In this sense, directly from the
preceding proof of Theorem 54, we obtain the following statement.

Theorem 54a. (Positivity of linear operators). Let us assume that the
operator A : C[a, b] → S(D) is linear and continuous. If real numbers
pk (k = 0, 1, . . . ,m) satisfies inequality

∑m
k=0 pk ≥ 0, then the following

statement

f ∈ GK(I) implies Af ≥ 0,(43’)

for every function t 7→ f(t) is valid if and only if the following inequality
holds

Aω(t, c) ≥ 0 for every c ∈ I.(44’)

10. Miscellaneous results, problems, and applications

10.1. (J e n s e n, [1905]). Let D ⊂ Rn be a convex and open set. If f : D → R is a
J-convex function, then for every n ∈ N and for all x1, . . . , xn ∈ D the following inequality
holds

f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
.(48)

Proof. It follows from inequality (J) by mathematical induction that for every p ∈ N and
for all x1, . . . , xm ∈ D (m := 2p) the following inequality holds in the form as

f

(
1

2p

2p∑
i=1

xi

)
≤ 1

2p

2p∑
i=1

f(xi).(49)
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Further, fix an n ∈ N, and choose a p ∈ N such that n < 2p. Take arbitrary x1, . . . , xn ∈
D and put

xk =
1

n

n∑
i=1

xi for k = n+ 1, . . . , 2p;(50)

thus, since D is a convex set, the points of the form (50) belong to D, which means that

f

(
1

n

n∑
i=1

xi

)
= f

(
1

2p

2p∑
i=1

xi

)
≤ 1

2p

[
n∑
i=1

f(xi) + (2p − n)f

(
1

n

n∑
i=1

xi

)]
,

i.e., we obtain (48). The proof is complete. (For a different proof of the preceding proof
see: T a s k o v i ć [2001].) �

Let D ⊂ Rn be a convex and open set. If f : D → R is a J-convex function, then for
every x, y ∈ D, and for every λ ∈ Q ∩ [0, 1] the following inequality holds in the form as

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).(51)

Proof. Let λ = k/n for every n ∈ N, where 0 < k < n. If we put x1 = · · · = xk = x and
xk+1 = · · · = xn = y, then by (48) we obtain the following inequality in the form as

f

(
kx+ (n− k)y

n

)
≤ kf(x) + (n− k)f(y)

n

which is the same as the inequality (51). If in the preceding case λ = 0 or λ = 1, then
the inequality (51) is trivial. The proof is complete. �

Annotation. If f : D → R is a J-convex function and a continuous function, then (51)
holds for all real λ ∈ [0, 1]. The converse statement is also true, in the following sense, as:

Proposition 11. Let D ⊂ Rn be a convex and open set, and let f : D → R, be a function.
The function f is J-convex and continuous if and only if it satisfies inequality (51) for all
x, y ∈ D and for all λ ∈ [0, 1].

10.2. (J e n s e n, [1905]). Let D ⊂ Rn be a convex set, and let F ⊂ R be a field. If
a function f : D → [−∞,+∞) satisfies (51) for all λ ∈ Q ∩ [0, 1], then the following
inequality holds in the from as

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)(52)

for every n ∈ N, for all x1, . . . , xn ∈ D, and for all λ1, . . . , λn ∈ F ∩ [0, 1] such that
λ1 + · · ·+ λn = 1.

Proof. The proof runs by induction. For n = 2 inequality (52) is identical with (51). Now
suppose (52) to be true for an n ∈ N. Take arbitrary x1, . . . , xn+1 ∈ D and λ1, . . . , λn+1 ∈
F ∩ [0, 1] such that λ1 + · · · + λn+1 = 1. If λ1 = · · · = λn = 0, λn+1 = 1, then (52) is
triviaL. If λ1 + · · ·+ λn 6= 0, then we get by (51)

f

(
n+1∑
i=1

λixi

)
= f

((
n∑
i=1

λi

)
λ1x1 + · · ·+ λnxn
λ1 + · · ·+ λn

+ λn+1xn+1

)
≤

≤

(
n∑
i=1

λi

)
f

(
λ1

λ1 + · · ·+ λn
x1 + · · ·+ λn

λ1 + · · ·+ λn
xn

)
+ λn+1f(xn+1),

(53)



92 Inequalities of General Convex Functions and Applications

and thus, from all the preceding facts, and by the induction hypothesis, we obtain the
following inequality in the form as

f

(
λ1

λ1 + · · ·+ λn
x1 + · · ·+ λn

λ1 + · · ·+ λn
xn

)
≤

≤ λ1

λ1 + · · ·+ λn
f(x1) + · · ·+ λn

λ1 + · · ·+ λn
f(xn),

and thus, from (53), we obtain (52) for n+1. This means that inequality (52) is generally
true. The proof is complete. �

Annotation. We notice that inequality (52) with arbitrary λ1, . . . , λn ∈ Q∩[0, 1], adding
up to 1, and for every continuous J-convex function f : D → R with arbitrary λ1, . . . , λn ∈
[0, 1], adding up to 1.

10.3. (A characterization of J-convexity). Let D ⊂ Rn be a convex and open set.
Show that a function f : D → R is J-convex if and only if the set

S :=
{

(x, y) ∈ D × R : y > f(x)
}

is J-convex. (A nonempty set A ⊂ Rn is called J-convex iff (x+y)/2 ∈ A for all x, y ∈ A.)

Open problem 2. Show that a function f : D → R (D ⊂ Rn is a convex and open set)
is general J-convex if and only if the set

G :=
{

(x, y) ∈ D × R : y > max
{
f(x), g(f(x), f(x))

}}
is a J-convex set for a function g : f(D)2 → R (for which f is a general J-convex function).

10.4. (Jensen convexity on rational lines). In this section we discuss some properties
of J-convex functions connected with their boundedness and continity.

Lemma 6. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. Then the following inequalities hold in the form as

f(x)− f(x− nd)

n
≤ f(x)− f(x−md)

m
≤ f(x+md)− f(x)

m
≤ f(x+ nd)− f(x)

n
(54)

for every x ∈ D, for every d ∈ Rn, and for all m,n ∈ N such that 0 < m < n and
x± nd ∈ D.

Proof. We use problem 1 (of this part of the book). Take in (48) x1 = · · · = xm = x+nd,
xm+1 = · · · = xn = x. We obtain

f

(
m(x+ nd) + (n−m)x

n

)
≤ mf(x+ nd) + (n−m)f(x)

n
,

i.e., f(x) − f(x −md) ≤ f(x + md) − f(x), and the middle inequality in (54) results on
dividing both the sides by m. The proof is complete. �

Lemma 7. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. If f is bounded above on a set A ⊂ D, then it is also bounded above (by the
same constant) on Q(A), where Q(A) is the convex hull of A.

Proof. Suppose that for a certain constant M ∈ R we have f(t) ≤ M for t ∈ A. Take
an arbitrary x ∈ Q(A). Then there exist an n ∈ N, and t1, . . . , tn ∈ A, and λ1, . . . , λn ∈
Q ∩ [0, 1] such that

x = λ1t1 + · · ·+ λntn (λ1 + · · ·+ λn = 1);
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thus, by problems 2 and 3, we obtain from the preceding facts that the following inequal-
ities hold in the form as

f(x) ≤
n∑
i=1

λif(ti) ≤
n∑
i=1

λiM = M

n∑
i=1

λi = M,

which means that f is a bounded above function by M on the set Q(A). The proof is
complete. �

Corollary 9. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. If f is bounded above on a set A ⊂ D, then it is also bounded above (by the
same constant) on J(A), where J(A) is the J-convex hull of A.

Proof. This could be proved by the same argument as problem 1, but we will derive this
directly from Lemma 7. Since 1/2 ∈ Q, the set Q(A) is J-convex, and hence J(A) ⊂ Q(A).
So our corollary is an immediate consequence of Lemma 7. The proof is complete. �

Corollary 10. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. For arbitrary x, y ∈ D, the function f is bounded above on the rational segment
Q(x, y).4

Proof. This follows from Lemma 7 in view of the fact that every function is bounded on
every finite set. The proof is comeplete. �

Lemma 8. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. Then, for arbitrary x, y ∈ D, the function f is bounded below on the rational
segment Q(x, y).

Proof. Take arbitrary x, y ∈ D and t ∈ Q(x, y). According to (55) there exists a λ ∈
Q ∩ [0, 1] such that t = λx+ (1− λ)y. Moreover, by Corollary 9, there exists a constant
M such that

f(s) ≤M for every s ∈ Q(x, y).(56)

Put u = (x+ y)/2 and v = 2u− t. Then, v = x+ y− λx− (1− λ)y = λy+ (1− λ)x ∈
Q(x, y), whence by (56) f(v) ≤M . Also, we have 2f(u) ≤ f(v) + f(t), whence

f(t) ≥ 2f(u)− f(v) ≥ 2f(u)−M ;

thus, this means that f is a bounded below function on Q(x, y) by the constant 2f(u)−M .
The proof is complete. (This constant, i.e., 2f(u)−M depends on x and y, but not on a
particular t ∈ Q(x, y)!) �

Theorem 55. (Uniformly continuous). Let D ⊂ Rn be a convex and open set, and let
f : D → R be a J-convex function. Then, for arbitrary a, b ∈ D, the function f |Q(a, b) is
uniformly continuous.

4Rational segments. If a, b ∈ Rn are arbitrary points, we write Q(a, b) insteaed of
A({a, b}), and call Q(a, b) the rational segment joining the points a, b. It is easily seen
that

Q(a, b) :=
{
x ∈ Rn : x = λa+ (1− λ)b, λ ∈ Q ∩ [0, 1]

}
,(55)

for if in the combination x = α1a1 + · · · + αnan several ai’s equal a, and the remaining
equal b, we can make the suitable reduction, denoting the sum of the coefficients of ai = a
by λ. And if one of a, b is laching in the combination, we can always add it with the
coefficient zero!
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We notice that every uniformly continuous function on a set A ⊂ Rn can be uniquely
extended onto ClA to a continuous function, so we obtain from Theorem 55 the following
fact.

Theorem 56. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. Then, for arbitrary a, b ∈ D, there exists a unique continuous function gab :
ClQ(a, b)→ R such that gab|Q(a, b) = f |Q(a, b). The function gab for all x, y ∈ ClQ(a, b)
satisfies

gab
(x+ y

2

)
≤ gab(x) + gab(y)

2
.

10.5. (Local boundedness of J-convex functions). Let D ⊂ Rn. A function f : D →
R is called locally bounded (locally bounded above, locally bounded below) at a point
x0 ∈ D iff there exists a neighbourhood U ⊂ D of x0 such that the function f is bounded
(bounded above, bounded below) on U . The following three statements refer to the local
boundedness of f on open subsets of D:

(a) Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function.
If f is locally bounded above at a point x0 ∈ D, then it is locally bounded above at every
point x ∈ D.

(b) Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function.
If f is locally bounded below at a point x0 ∈ D, then it is locally bounded below at every
point x ∈ D.

(c) Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function.
If f is locally bounded above at a point x0 ∈ D, then it is locally bounded at every point
x ∈ D.
Proof for (c). By (a) f is locally bounded above at every point x ∈ D, and so if we show
that f is locally bounded below at x0, then it will follow by (b) that is locally bounded
below, and hence locally bounded at every point x ∈ D.

LetK ⊂ D be an open ball around x0 such that f is bounded above onK, i.e., f(t) ≤M
for t ∈ K, with a real constant M . Take an arbitrary u ∈ K and put t = 2x0 − u so that
2x0 = u + t. We have t − x0 = −(u − x0), whence |t − x0| = |u − x0|, which shows that
t ∈ K. We have 2f(x0) = f(u) + f(t), whence by the preceding we obtain

f(u) ≥ 2f(x0)− f(t) ≥ 2f(x0)−M ;

thus, f is a bounded below function on K by the constant 2f(x0) −M . The proof is
complete.

10.6. (The lower hull of J-convex function). Let D ⊂ Rn be an open set, and let
f : D → R be a function. For x ∈ D and r > 0 sufficiently small (such that K(x, r) ⊂ D)
the function mf : D → [−∞,+∞) is called the lower hull of f , and its value at an x ∈ D
is called the infimum of f at x, i.e.,

mf (x) = lim
r→0+

inf
K(x,r)

f ;

and similarly, we can define the function Mf : D → (−∞,+∞] in the following adequate
form as

Mf (x) := lim
r→0+

sup
K(x,r)

f,

which is called an upper hull of f , and its value at an x ∈ D is called the supremum of
f at x.

If the set D is convex, if the function f is J-convex, and if f is locally bounded below
at a point x0 ∈ D, then the infimum of f at every x ∈ D is finite. Thus, in such a case,
the function mf is finite, i.e., mf : D → R. In the other case, f is locally unbounded
below at every point x ∈ D, which means that mf (x) = −∞ for every x ∈ D. Similarly,
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it follows, from the preceding problem 6, that either Mf (x) is finite for every x ∈ D, i.e.,
Mf : D → R or Mf (x) = +∞ for every x ∈ D.

Theorem 57. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. If mf 6= −∞, then the function mf : D → R is continuous and J-convex.

10.7. (Theorem of Bernstein-Doetsch). Let D ⊂ Rn be an open set, and let f : D →
R be a function. If follows directly from the definition of the lower hull of f that the
following inequality holds in the from as

mf (x) ≤ f(x) for x ∈ D,

but, if the function f is J-convex and if the set D is convex, we have more precise
information in the following form:

(a) Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function.
If at a point ξ ∈ D we have f(ξ) 6= mf (ξ), then f is not locally bounded at ξ.

(b) (B e r n s t e i n-D o e t s c h [1915]). Let D ⊂ Rn be a convex and open set, and
let f : D → R be a J-convex function. If f is locally bounded above at a point of D, then
it is continuous in D.
Proof for (b). Let f be locally bounded above at a point of D. By problem 6 f is
locally bounded at every point of D, whence it follows in virtue of (a) that f(x) = mf (x)
for x ∈ D. Since f is locally bounded, we have mf 6= −∞, whence, by problem 7, mf is
continuous in D. Consequently f is continuous in D.

Since every open set is a neighborhood of any of its points, we get hence the following
consequence in the form as:

Corollary 11. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex
function. If f is bounded above on a nonempty open set U ⊂ D, then it is continuous in
D.

If a function is continuous at a point, then it is locally bounded at this point. Thus
Bernstein-Doetsch theorem implies the following statement.

Theorem 58. Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-
convex function. Then, either f is continuous in D or f is totally discontinuous (i.e.,
discontinuous at every point of D) in D.

Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function. Let
x ∈ D and y ∈ Rn be such that x+ y ∈ D. Prove that

lim
n→∞

f

(
x+

y

2n

)
= f(x).(57)

Open problem 3. Let D ⊂ Rn be a convex and open set. If f : D → R is a general
J-convex function, does equality (57) hold?!

Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function. Let
0, a, b, a+ b ∈ D. Prove that the set

A :=
{
x ∈ Rn : x = λa+ ηb; λ, η ∈ Q ∩ [0, 1]

}
is contained in D. Also, prove that the function f is bounded on the set A. (Does this
statement holds whenever f : D → R is a general J-convex function?)!
Instruction for proof. Clearly f is bounded above on A, and bounded below on Q(0, a+
b). For any x ∈ A, x = λa+ ηb and λ, η ∈ Q ∩ [0, 1] consider the points y = ηa+ λb and
2z = x+ y!
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Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function. Let
0, a, b, a + b ∈ D, and let λn, µn ∈ Q ∩ [0, 1] for n ∈ N such that limn→∞ λn = λ and
limn→∞ µn = µ. Prove that if λ, µ ∈ Q ∩ [0, 1], then

lim
n→∞

f(λna+ µnb) = f(λa+ µb).(58)

In as much 0, a, b ∈ D and λn, µn ∈ Q (n ∈ N) such that limn→∞ λn = λ, limn→∞ µn =
µ, λa+ µb ∈ D, λna+ µnb ∈ D (n ∈ N) and λ, µ ∈ Q, then equality (58) holds also.

Let D ⊂ Rn be a convex and open set, and let f : D → R be a J-convex function.
Let 0, a, b ∈ D. Prove that if a and b are linearly independent over R, then the function
f |E(a, b) ∩ D is continuous, where the set E(a, b) is called the rational plane passing
through the origin, a and b.

Annotation. We notice that this statement is not hold if a, b ∈ R are lineraly dependent
over R. (Take incommensurable a, b ∈ R, and let f : R→ R be an additive function such
that f(a) = 1 and f(b) = 0. Consider a sequence xn = pna + qnb (pn, qn ∈ Z for n ∈ N)
such that limn→∞ xn = 0!).

10.8. (The equality of lower and upper hull). Let D ⊂ Rn be an open set, and let
f : D → R be a function. Prove that the condition Mf (x) = mf (x) is necessary and
sufficient for the continuity of f at x ∈ D.

(C s á s z á r, [1958]). Let D ⊂ Rn be a convex and open set, and let f : D → R be
a J-convex function. Let T ⊂ D be a measurable set such that m(T ) > 0. Then for no
measurable function g : T → R we may have

mf (x) < g(x) ≤ f(x) for every x ∈ T.

(C s á s z á r, [1958]). Let D ⊂ Rn be a convex and open set, and let f : D → R be
a J-convex function. Let T ⊂ D be a set fulfilling one of the following conditions: T is
a Lebesgue measurable set of positive measure or T is of the second category and with
Baire property. Then cannot hold for any real constant K the following inequalities of
the form

mf (x) < K ≤ f(x) for every x ∈ T.
(H u k u h a r a, [1954]). Let D ⊂ Rn be a convex and open set, and let T ⊂ D be a

set fulfilling one of conditions: T is a Lebesgue measurable set of positive measure or T is
of the second category and with the Baire property. Then T ∈ F(D), where F(D) is the
class of all sets T ⊂ D with the property that every J-convex function f : D → R which
is bounded below on T is locally bounded below at every poit of D.

We notice that H u k u h a r a [1954] proved the preceding result in the case n = 1. This
result has then be extended to higher dimensions by M a r c u s [1959] and C s á s z á r
[1958].

(S m i t a l, [1976]). Let D ⊂ Rn be a convex and open set, and let U denoted the sets
T ⊂ Rn such that every J-convex function f : D → R bounded above on T is continuous
in D. Then F(D) ⊂ U , where F(D) is defined in the preceding problem 16.

Proof. Let T ∈ F(D), and let f : Rn → R be an arbitrary additive function bounded
above on T : f(x) ≤M for x ∈ T . Put g = −f |D. Then g : D → R is a J-convex function
bounded below on T i.e.,

g(x) ≥ −M for every x ∈ T,

thus, since T ∈ F(D), this means that g is locally bounded below at every point of
D, and hence f is locally bounded above at every point of D. Applying Bernstein-
Doetsch theorem (problem 8) we obtain that f is continuous. Hence T ∈ U . The proof is
complete. �
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Annotation. But actually the inclusion F(D) ⊂ U cannot be replaced by the equality,
as may be seen from the example in: K u c z m a [1970].

10.9. (Jensen equation, K u c z m a [1970]). The equation resulting on replacing in
the Jensen inequality (J) the sign of inequality by that of equality in the form as

f
(x+ y

2

)
=
f(x) + f(y)

2
(59)

is known as the Jensen equation by A c z é l [1966]. We will consider equation (59) for
functions f : D → R, where D ⊂ Rn is a convex set.

If D were also open, then f satisfying (59) would be J-convex, and thus all the results
established in the previous sections of this book for J-convex functions would apply. The
following facts hold:

(a) Let D ⊂ Rn be a convex set such that 0 ∈ D, and let f : D → R be a solution of
equation (59) such that f(0) = 0. Then, for every x ∈ D and n ∈ N,

f
( x

2n

)
=

1

2n
f(x).

(b) Let D ⊂ Rn be a convex set such that int(D) is nonempty, and let f : D → R be
a solution of equation (59). Fix an x0 ∈ int(D), and define the function g : D\{x0} → R
by g(x) = f(x0 + x)− f(x0). Then there exists a unique function µ : Rn → R satisfying
equation (59) in Rn and such that

µ(x) = g(x) for every x ∈ D\{x0}.

(c) Let a function f : Rn → R satisfy equation (59) and the relation of the form as
f(0) = 0. Then f is an additive function.

(d) Let D ⊂ Rn be a convex set such that int(D) is a nonempty set, and let f : D → R
be a solution of equation (59). Then there exist an additive function g : Rn → R and a
constant a ∈ R such that

f(x) = g(x) + a for every x ∈ D.

(e) Let D ⊂ Rn be a convex set such that int(D) is a nonempty set. A function
f : D → R is a continuous solution of equation (59) if and only if with certain constants
c ∈ Rn and a ∈ R is

f(x) = cx+ a for every x ∈ D.
(f) Let D ⊂ Rn be a convex set such that int(D) is a nonempty set, and let f : D → R

be a solution of equation (59). If f is measurable or is bounded above (or below) on a set
T ∈ U , then f is continuous.

10.10. (Strong J-convexity, P o l z a k [1966]). Let I := (a, b) ⊂ R be an open
interval. Call that the function f : (a, b)→ R is strongly J-convex if there is an α > 0
such that

f
(x+ y

2

)
≤ f(x) + f(y)

2
− 1

4
α(x− y)2

for all x, y ∈ (a, b). Then f is an general J-convex function. Show that this is equivalent
to each of the following conditions:

(a) The following inequality holds in the form for all points x, y ∈ I and for arbitrary
λ ∈ [0, 1] as

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)α(x− y)2.

(b) For each x0 ∈ (a, b) there is a linear function A such that the following inequality
holds for every x ∈ (a, b) in the form as

f(x) ≥ f(x0) +A(x− x0) + α(x− x0)2.
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(c) For the differentiable function f : (a, b) → R the following inequality holds for all
points x, y ∈ (a, b) in the form as[

f ′(x)− f ′(y)
]
(x− y) ≥ 2α(x− y)2.

(d) For the differentiable function f : (a, b) → R the following inequality holds for all
points x, x0 ∈ (a, b) in the form as

f(x) ≥ f(x0) + f ′(x)(x− x0) + α(x− x0)2.

(e) For the twice differentiable function f : (a, b) → R the following inequality holds
for every point x ∈ (a, b) in the form as f ′′(x) ≥ 2α.

Annotation. If f is strongly J-convex on (a, b), then f is bounded below, {x : f(x) < λ}
is bounded for arbitrary λ, and f has a unique minimum on any closed subinterval of (a, b).
What else is true? Generalize the whole idea to the setting of a normed linear space. See:
P o l z a k [1966], L y u b i c h and M a i s t r o v s k i j [1970], R o b e r t s-V a r b e r g
[1973] and Ta s k o v i ć [2005].

10.11. (Uniform J-convexity, L e v i t a n-P o l z a k [1966]). Let U be an open
convex set in a normed linear space L. Call f : U → R uniformly J-convex if there is
an increasing function δ : R0

+ → R0
+ with δ(0) = 0 and δ(t) > 0 for t > 0 such that

f
(x+ y

2

)
≤ f(x) + f(y)

2
− δ(‖x− y‖)

for all x, y ∈ U . On the other hand, the function f : U → R is uniformly J-quasiconvex
if the following inequality holds in the form as

f
(x+ y

2

)
≤ max{f(x), f(y)} − δ(‖x− y‖)

for an increasing function δ : R0
+ → R0

+ with δ(0) = 0 and δ(t) > 0 for t > 0 and for all
x, y ∈ U .

Annotation. For the develop the theory of such functions see: P o l z a k [1966], L e v -
i t a n - P o l z a k [1966], L y u b i c h - M a i s t r o v s k i j [1970], and Ta s k o v i ć
[1994].

10.12. (General uniform J-convexity, T a s k o v i ć [1994]). Let U be an open
convex set in a normed linear space L. Call f : U → R general uniformly J-convex if
there exists a function g : f(U)2 → R and a function σ : R0

+ → R such that

f
(x+ y

2

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
+ σ(‖x− y‖)

for all x, y ∈ U . Evidently, this class of functions is the biggest by breadth of the preceding
classes of functions: strong J-convexity and uniform J-convexity!

10.13. (Graphs of J-convex functions). Let D ⊂ Rn be a convex and open set, and
let f : D → R be a J-convex function. Let mf be the lower hull of f . By Theorem 57
(in problem 7) either mf (x) = −∞ for all x ∈ D, or mf : D → R is a continuous and
J-convex function. Let

Gr(f) :=
{

(x, y) ∈ Rn+1 : x ∈ D, y = f(x)
}

be the graph of f . Then we have the following result: If f : D → R is a discontinuous
J-convex function, then the set Gr(f) is dense in the set of the form as

Af :=
{

(x, y) ∈ Rn+1 : x ∈ D, y > mf (x)
}
.
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10.14. (Characterizations of convex functions). Let D ⊂ Rn be a convex and open
set. We say that a J-convex function f : D → R fulfils the following inequality of the
form as

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)(60)

for all x, y ∈ D and arbitrary λ ∈ Q ∩ [0, 1]. It was also pointed out that if, moreover, f
is continuous, then inequality (60) holds actually for all real λ ∈ [0, 1].

The convex function f : D → R (=: J-convex and continuous) if and only if it satisfies
inequality (60) for all x, y ∈ D and for arbitrary λ ∈ [0, 1].

Let J ⊂ R be an open interval and let f : J → R be a function. Each of the following
conditions (postulated for every x, y, z ∈ j with x < y < z) is necessary and sufficient for
the function f to be convex:

f(z)− f(x)

z − x ≤ f(z)− f(y)

z − y(61)

f(y)− f(x)

y − x ≤ f(z)− f(x)

z − x(62)

(z − x)f(y) ≤ (y − x)f(z) + (z − y)f(x).(63)

10.15. (Differences quotients of convex functions). Let J ⊂ R be an open interval,
and let f : J → R be a function. We define a function I(x, h) for x ∈ J and h ∈ R such
that h 6= 0, x+ h ∈ J , and

I(x, h) :=
f(x+ h)− f(x)

h
(64)

(a) Let J ⊂ R be an open interval, and let f : J → R be a convex function. Then the
corresponding function I defined by (64) is increasing with respect to either variable.

(b) Let J ⊂ R be an open interval, and let f : J → R be a function. Let I be defined
by (64). If for h > 0 the function I is increasing with respect to h, then f is convex. If f
is increasing with respect to x, then f is J-convex, but need not be continuous.

(c) Let J ⊂ R be an open interval, and let f : J → R be a convex function. Then, for
every fixed h > 0, the function 4hf(x) := f(x + h) − f(x) (defined for x ∈ J such that
x+ h ∈ J) is increasing.

(d) Let J ⊂ R be an open interval, J = (a, b), and let f : J → R be a convex function.
Then either f is monotonic in J , or there exists a point x0 ∈ J such that f is decreasing
in (a, x0), and increasing in (x0, b).

Proof for (b). Suppose that I is increasing with respect to h. Take arbitrary a < b < c
(a, b, c ∈ J), and put x = a, h = b− a, r = c− a > h. Then I(x, h) ≤ I(x, r), i.e.,

f(b)− f(a)

b− a ≤ f(c)− f(a)

c− a ,

i.e., consequently, f satisfies condition (62) in problem 23, and thus it is convex.
Now let I be increasing with respect to x. Take arbitrary x, y ∈ J (x 6= y). thus one

of x, y is smaller than the other. Let 2h = y − x, a = x, b = x+ (y − x)/2 = a+ h > a.
Hence I(a, h) ≤ I(b, h), i.e.,

f
(x+ y

2

)
− f(x)

y − x
2

≤
f(y)− f

(x+ y

2

)
y − x

2

.(65)

or, after multiplication by (y − x)/2 > 0, and rearranging the remaining terms, f is a
J-convex function. If y = x, then convexity is equivalent to the Jensen inequality (J),
Thus f is J-convex function.
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The monotonicity of I woth respect to x does not imply the continuity of f . For
example, if f : R→ R is a discontinuous additive function, then the function

I(x, h) =
f(x+ h)− f(x)

h
=
f(h)

h

does not depend on x, and thus, as a function of x, it is constant, and hence increasing.
But f is discontinuous. The proof is complete.

Remark. On the other hand, we may observe that the J-convexity of f alone does
not imply the monotonicity of I(x, h) with respect to x. For an example for this see:
T a s k o v i ć [2005].

10.16. (Restriction of general convexity). Let D ⊂ Rn be a convex and open set.
Then the function f : D → R is general convex if and only if the function fx,y : [0, 1]→ R
is general convex defined by fx,y(λ) := f(λx+ (1− λ)y) for all x, y ∈ D.

Proof. Let f : D → R be a general convex function. If x, y ∈ D and λ, µ, η ∈ [0, 1]
are arbitrary, then we obtain the following inequality in the form as

fx,y(λη + (1− λ)µ) = f
(
λ[ηx+ (1− η)y] + (1− λ)[µx+ (1− µ)y]

)
≤

≤ max
{
fx,y(η), fx,y(µ), g

(
fx,y(η), fx,y(µ)

)}
,

for a corresponding function g : f(D)2 → R for which f is the general convex function.
Thus, the function fx,y(λ) is general convex.

Vice versa, let fx,y(λ) : [0, 1]→ R be a general convex function over a bisection function
g : f(D)2 → R. Then we obtain that holds the following inequality in the form as

f(λx+ (1− λ)y) = fx,y(λ) = fx,y(λ+ (1− λ)0) ≤

≤ max
{
fx,y(1), fx,y(0), g

(
fx,y(1), fx,y(0)

)}
= max

{
f(x), f(y), g

(
f(x), f(y)

)}
,

for all points x, y ∈ D and for arbitrary λ ∈ [0, 1]. This means that f : D → R is a general
convex function. The proof is complete.

According to problem 24, if f : J → R (J is an open interval) is a convex function,
then for every fixed x ∈ J the differences quotient I(x, h) is an increasing function of h.
Consequently it has finite one-sided limits as h tends to zero from the right, and from the
left. But these limits are one-sided deviratives of f at x in the following forms:

f ′+(x) := lim
h→0+

I(x, h), f ′−(x) := lim
h→0−

I(x, h).

10.17. (Differentiation of convex functions). Let J ⊂ R be an open interval, and let
f : J → R be a convex function. Then at every point x ∈ J there exist the right derivative
f ′+(x) and the left derivative f ′−(x), and we have for every x, y ∈ J (x < y) that is

f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y).(66)

Proof. The existence of derivatives f ′−(x) and f ′+(x) results from the monotonicity of
I(x, h) as a function of h, as has been pointed out above, by problem 24. Moreover, for
all x, y, z ∈ J (x < y < z), from problem 23, we obtain

f(y)− f(x)

y − x ≤ f(z)− f(x)

z − x ≤ f(z)− f(y)

z − y .

Letting that y → x+ in the first inequality anf that y → z− in the second inequality,
we obtain (with f ′−(x) ≤ f ′+(x)) all inequalities in (66). The proof is complete.

Some remarks. Inequalities (66) show that the functions f ′+(x) and f ′−(x) are in-
creasing, and hence at every point x ∈ J they have one-sided limits. Since f is continuous,
the function I(x, h) is continuous with respect to x.
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Moreover, we have for all x, y ∈ J (x < y) (0 < h < y − x), the following inequalities

I(x,−h) ≤ I(x, h) ≤ I(y,−h) ≤ I(y, h);(67)

only the inequality I(x, h) ≤ I(y,−h) requires a motivation, the remaining ones result
from the inequality −h < h and from problem 24. Now,

I(y,−h) =
f(y − h)− f(y)

−h =
f((y − h) + h)− f(y − h)

h
≥ f(x+ h)− f(x)

h
= I(x, h).

since y − h > x, and the function I(x, h) is monotonic with respect to the first variable,
from problem 24. Letting in (67) h→ 0+ we obtain inequalities (66), also. Moreover,

lim
t→x+

f ′+(t) = lim
t→x+

f ′−(t) = f ′+(x),

lim
t→x−

f ′+(t) = lim
t→x−

f ′−(t) = f ′−(x).

Geometrically, we notice from the preceding facts and problem 23 that if f : J → R is a
convex function but not necessarily differentiable function, then it follows two inequalities:
f(x) ≥ f(ξ) + f ′+(ξ)(x− ξ) and f(x) ≥ f(ξ) + f ′−(ξ)(x− ξ) for arbitrary point ξ ∈ J . See:
Fig. 11.

Here, the so-called subdifferential is equals the set of all slopes of the straight lines
through (x, f(x)) which lie beneath the curve determined by f is the stating point for the
convex analysis!

Figure 11

Annotations. We may observe that the convexity of f alone does not imply the
monotonicity of I(x, h) with respect to x. In this sense, let g : R→ R be a discontinuous
additive function, and let f : R → R be defined by f(x) = [g(x)]2 for x ∈ R. Thus f
is J-convex. Fix and h such that g(h) 6= 0̄. We have I(x, h) = 2g(x)g(h)/h + [g(h)]2/h.
Hence

g(x) =
h

2g(h)

(
I(x, h)− 1

h
[g(h)]2

)
;

i.e., if I(x, h) were increasing with respect to x, then the function g would be monotonic,
and hence continuous. Consequently I(x, h) cannot be increasing with respect to x.

10.18. (Differential conditions of convexity). The convexity of a differentiable func-
tion can be inferred from the behaviour of its derivatives as: Let I ⊂ R be an open
interval, and let f : I → R be a differentiable function. The function f is J-convex if and
only if the function f ′ is increasing in I.
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Proof. The sufficiently part results from problem 26. Now assume that f ′ is increasing
in I, and take arbitrary x, y ∈ I (x < y). We have by the mean-value theorem.

f(y)− f
(x+ y

2

)
= f ′(v)

(
y − x+ y

2

)
= f ′(v)

y − x
2

,

f
(x+ y

2

)
− f(x) = f ′(u)

(x+ y

2
− x
)

= f ′(u)
y − x

2
,

where u, v ∈ I are points sucht that x < u < (x + y)/2 < v < y. Hence f ′(u) ≤ f ′(v),
i.e., this means that the following inequality holds

f
(x+ y

2

)
− f(x) ≤ f(y)− f

(x+ y

2

)
,

thus, this inequality has been so far established for x < y. For x = y this is obvious. The
proof is complete.

Annotation. As a direct consequence of this result we have the following fact: Let
J ⊂ R be an open interval, and let f : J → R be a twice differentiable function. The
function f is J-convex if and only if the function f ′′ is nonnegative in J .

10.19. (General convex functions with two variables, T a s k o v i ć [2005]).
Let D and C be two convex subsets of Rn (or of a real Banach space E). We say that
f : D × C → R is a general convex function iff there is a function g : f(D × C)2 → R
such that

f
(
λx+ (1− λ)y, λa+ (1− λ)b

)
≤ max

{
f(x, a), f(y, b), g

(
f(x, a), f(y, b)

)}
(Dk)

for all x, y ∈ D, for all a, b ∈ C, and for arbitrary λ ∈ [0, 1].
If (Dk) holds for all x, y ∈ D, for all a, b ∈ C, and for some λ ∈ [0, 1], then f is a

general λ-convex function.
If λ = 1/2, then f is a general J-convex function, i.e., if the following inequality

holds for some function g : f(D × C)2 → R in the form as

f

(
x+ y

2
,
a+ b

2

)
≤ max

{
f(x, a), f(y, b), g

(
f(x, a), f(y, b)

)}
for all x, y ∈ D and for all a, b ∈ C.

Adequate to the preceding facts, f : D×C → R (D and C are convex sets) is a general
J-concave function iff there is a function d : f(D × C)2 → R such that

f

(
x+ y

2
,
a+ b

2

)
≥ min

{
f(x, a), f(y, b), d

(
f(x, a), f(y, b)

)}
for all x, y ∈ D and for all a, b ∈ C.

On the other hand, f : D × C → R (D and C are convex sets) is a general concave
function iff there is a function d : f(D × C)2 → R such that

min
{
f(x, a), f(y, b), d

(
f(x, a), f(y, b)

)}
≤ f

(
λx+ (1− λ)y, λa+ (1− λ)b

)
.

for all x, y ∈ D, for all a, b ∈ C, and for arbitrary λ ∈ [0, 1].
The following statement holds: Let D ⊂ Rn be an oopen and convex set. If f :

D ×D → R is a general J-convex function, then there is a function g : f(D ×D)n → R
such that

f
(x1 + · · ·+ xn

n
,
a1 + · · ·+ an

n

)
≤ max

{
f(x1, a1), . . . , f(xn, an), g

(
f(x1, a1), . . . , f(xn, an)

)}
for every n ∈ N, for all points x1, . . . , xn ∈ D, and for all points a1, . . . , an ∈ D. (The
proof of this statement is totally analogous with the proof of Theorem 2.)
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10.20. (General s-convex functions, T a s k o v i ć [2005]). In this part first we
will give a definition of an s-convex set. Let X be a linear space over the field R. Any
element of the following form as

a1/sx+ b1/sy for 0 < s ≤ 1,

where a+ b = 1 (a, b ≥ 0) and x, y ∈ X will be called an s-convex linear combination
of x and y. A subset A of the space X is said to be s-convex set for 0 < s ≤ 1, if,
whenever it contains x and y, it also contains all their s-convex linear combinations.

Let X = R, then evidently A = [0,+∞) is an s-convex set for every 0 < s ≤ 1.
Moreover, if A ⊂ X = R is closed and s-convex for 0 < s ≤ 1, then it is a closed interval
containing zero not necessarily as an inner point.

The following characterization of the s-convexity holds: A subset A ⊂ X is s-convex
if and only if for each n points x1, . . . , xn ∈ A and for all a1, . . . , an ≥ 0 satisfying
a1 + · · ·+ an = 1 the following condition holds(

n∑
k=1

a
1/s
k xk

)
∈ A where n ≥ 2.

Let the domain of a function f be an s-convex subset A ⊂ X and f(A) ⊂ R. We call
this function f is general s-convex for 0 < s ≤ 1 if there exists a function g : F (A)2 → R
such that for all s-convex combinations a1/sx+ b1/sy of x, y ∈ A the following inequality
holds in the form as

f
(
a1/sx+ b1/sy

)
≤ max

{
f(x), f(y), g

(
f(x), f(y)

)}
.(68)

We notice that repalacing a and b in inequality (68) by a and b respectively, we obtain
the following inequality of the form as

f(ax+ by) ≤ max
{
f(x), f(y), g

(
f(x), f(y)

)}
,(69)

where a2 + bs = 1 for a, b ≥ 0. In this sense, the inequalities (68) and (69) are evidently
equivalent. The following fact holds.

Proposition 12. Let A be an s-convex set of a linear space X for 0 < s ≤ 1. Then the
function f : A → R is general s-convex if and only if there is a function g : f(A)n → R
such that

f

(
n∑
k=1

a
1/s
k xk

)
≤ max

{
f(x1, . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
(70)

for every n ≥ 2, for all points x1, . . . , xn ∈ A and for all real numbers a1, . . . , an ≥ 0
satisfying a1 + · · ·+ an = 1.

In the next let us take nonnegative b1, . . . , bn such that b1 +· · ·+bn > 0. Then applying
Proposition 88 with ak = bk/(b1 + · · · + bn) we get the following inequality for general
s-convex functions f : A→ R for 0 < s ≤ 1 in the form as

f

( ∑n
k=1 b

1/s
k xk(∑n

k=1 bk
)1/s

)
≤ max

{
f(x1), . . . , f(xn), g

(
f(x1), . . . , f(xn)

)}
.(71)

In the preceding context, inequalities (70) and (71) are equivalent. Also, if the function
f : A→ R is general s-convex, then it is general λ-convex function for all 0 < λ ≤ s ≤ 1.

On the other hand, in this part we will introduce a definition of a general modular
convex function in the following sense.
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Namely, the function f : A → R is called general modular convex if there exist a
function g : f(A)2 → R and a number γ ≥ 1 such that

f(αx+ βy) ≤ max
{
f(γx), f(γy), g

(
f(γx), f(γy)

)}
for all x, y ∈ A and for arbitrary numbers α, β ≥ 0 such that α+ β = 1.

If f : A→ R is a general modular convex function and an upper transversal modular,
then in special case we can obtain so-called Musielak-Orlicz s∗-quasi convex modular
ρ in the form as

ρ(αx+ βy) ≤ αs∗ρ(γx) + βs∗ρ(γy)

for all x, y ∈ A, for arbitrary numbers alpha, β ≥ 0 satisfying αs∗ + βs∗ ≤ 1 (s∗ =
min{1, s}, 0 < s < +∞), and if for some γ ≥ 1 independently of x, y, α and β.

In connection with this is essential the following class of functions. Namely the function
f : A → R is general modular concave if there exist a function d : f(A) → R and a
number γ ≥ 1 such that

f(αx+ βy) ≥ min
{
f(γx), f(γy), d

(
f(γx), f(γy)

)}
for all x, y ∈ A and for arbitrary numbers α, β ≥ 0 satisfying α+β = 1. (For further facts
see: T a s k o v i ć [1993]).

In the contexted of the preceding facts, the function f : A→ R is general s-concave
for 0 < s ≤ 1 if there is a function d : f(A)2 → R such that for all s-convex combinations
a1/sx+ b1/sy of x, y ∈ A the following inequality holds in the form as

f(a1/sx+ b1/sy) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
.(72)

In the proper preceding manner, replacing a and b in inequality (72) by as and bs

respectively, we obtain the following inequality in the form as

f(ax+ by) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
,(73)

where as + bs = 1 for a, b ≥ 0. In this sense, the inequalities (72) and (73) are evidently
equivalent. We give the following illustrations.

Example 1. (ϕ-functions, M a t u s z e w s k a [1961]). The function ϕ : R0
+ → R0

+ is
called ϕ-function if it is nondecreasing, continuous, f(u) = 0 if and only if u = 0, and if
ϕ(u)→ +∞ as u to ∞. We recall that an ϕ-function is s∗-quasi convex if for α, β ≥ 0
and αs∗ + βs∗ ≤ 1 the folloowing inequality holds

ϕ(αu+ βv) ≤ αs∗ϕ(γu) + βs∗ϕ(γv)

for all u, v ∈ A and for some γ ≥ 1 independently of the points u, v and of the numbers
α, β. In this case s∗ = min{1, s} for 0 < s < +∞.

Example 2. (O r l i c z [1932], s∗-quasi convex modular). Let (Ω,Σ, µ) be a measure
space and let X be a set of all Σ-measurable functions on Ω. If ϕ-function is an s∗-quasi
convex, then Orlicz modular of the form as

ρ(x) =

∫
Ω

ϕ(|x(t)|)dµ(t)

is an s∗-quasi convex function and the Orlicz space Lϕ = Xρ is an s∗-quasi normed
space with the s∗-quasi norm of the form as

|x|ρ = inf
{
u > 0 : ρ

( x

u1/s∗

)
≤ 1
}

in the space Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0+}. What else, Lϕ is a quasi normed
space with the consequant norm on quasi normed spaces X and Y .
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10.21. (The slasses d(ϕ)-functions and d(Lϕ)-spaces, T a s k o v i ć [2000]). In
this part, by a d(ψ)-function I shall understand a continuous nonincreasing function
ψ : R0

+ → R0
+ := [0,+∞) for which ψ(u) → 0 as u → +∞ and ψ(0) = b (for some

(0 < b ≤ +∞).
In this sense, for the case b = +∞, I shall understand that ψ(u) → +∞ as u → 0,

where f |R+ = (0,+∞). On the Figs. 12, 13, 14 and 15 we have the essential forms of
d(ψ)-functions.

Classe d(ψ)-functions appear often in various problems of nonlinear analysis and have
a certain analogy (although essential unlike) with the class of ϕ-functions from M a -
t u s z e w s k a [1961].

In our context, first time, the forms of d(ψ)-functions are appear in the connection with
the transversal lower (modular) spaces in 1998 from: T a s k o v i ć [2000] and [2005].

The following conditions appear often in various problems in which the d(ψ)-functions
are of importance:

lim
u→0

uψ(u) = 0 and lim
u→∞

uψ(u) = 0,

in the contrast with appears of the ϕ-functions in various problems in the forms:

lim
u→0

ϕ(u)

u
= 0 and lim

u→∞

ϕ(u)

u
= +∞.

Let Ω be a nonempty set and let Σ be a sigma-algebra of subsets of Ω. Also, let mu
be a nonnegative, nontrivial, complete, sigma-finite measure on Σ. We take as X the
space of all extended real valued, Σ-measurable functions on Ω with equality mu-almost
everywhere. Let ψ be a d(ψ)-function, then

ρ(x) =

∫
Ω

ψ(x(t))dµ

is a lower transversal modular in X. Moreover, if ψ is concave, then ρ is concave.

Figure 12 Figure 13

The set of all x ∈ X for which ρ(x)+∞ is called the d(ψ)-class, till the lower transver-
sal modular space d(Xρ) denoted by d(Lψ, (Ω,Σ, µ)) or d(Lψ). It is evident that d(Lψ)
is the smallest linear space containing the d(ψ)-class.
An inequality. If f : R0

+ → R0
+ is a continuous and strictly decreasing function with

property f(0) = b ∈ R+, then for a > 0 the following inequality holds in the form(
a− f−1(0)

)
b ≤

∫ a

0

f(x)dx−
∫ b

0

f−1(x)dx,(74)

where the equality holds in (74) if and only if f(a) = 0. (In (74) f−1 is the inverse function
of f).

It is easily seen that the function f : R0
+ → R0

+ from inequality (74) is a function in
the classe of d(ψ)-functions i.e., f ∈ d(ψ).
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Figure 14 Figure 15

On the other hand, from inequality (74), we can defined two complementary functions
in the following sense. We set

ψ(u) =

∫ u

0

f(t)dt, and ψ∗(u) =

∫ u

0

f−1(t)dt,

for u ≥ 0. Then, the functions ψ(u) and ψ∗(u) are complementary in the sense of
inequality (74). It is easily proved that they satisfy the following inequality of the form

uv − vf−1(0)lψ(u)− ψ∗(v)

for all u, v ≥ 0; and that

ψ∗(u) = inf
v≥0

(ψ(v)− uv + vf−1(0)),

and
ψ(u) = sup

v≥0
(uv − vf−1(0) + ψ∗(v)),

for every u ≥ 0, where the infimum being reached at v = f−1(u) in the first case, ant the
supremum at v = f(u) in the second case. Now, it is easily proved that

||x||∗ψ = sup

{∫
Ω

x(t)y(t)dµ : y ∈ X,
∫

Ω

ψ∗(y(t))dµ ≤ 1

}
,

is a lower transversal norm in d(Lψ), and, on the other hand, that is

||x||ψ = inf

{
u > 0 :

∫
Ω

ψ

(
x(t)

u

)
dµ ≤ 1

}
;

also, is a lower transversal norm in d(Lψ). Obviously is heare similarity with the Luxem-
burg and Orlicz norms.
Further on d(Lψ)-spaces. An extension of the d(Lψ)-space is the following. We take
a function ψ : R0

+ × Ω→ R0
+ such that: ψ(u, t) = b (for some 0 < b ≤ +∞) if and only if

u = 0, ψ(u, t) is a continuous and nonincreasing function of u ≥ 0 for a.e. t ∈ Ω, ψ(u, t)
is Σ-measurable in Ω for every u ≥ 0 and ψ(u, t)→∞ as u→∞ for a.e. t ∈ Ω. Then

ρ(x) =

∫
Ω

ψ(x(t), t)dµ

is a lower transversal modular in X. On the other hand, one may consider alos d(Lψ)-
spaces of vector valued functions with falues in a lower transversal normed space (E, || · ||)
which is lower complete. The lower transversal modular ρ may be written then in the
form

ρ(x) =

∫
Ω

ψ(||x(t)||, t)dµ,
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with suitable measurability for the functions x. Also, this may be still extended to the
form

ρ(x) =

∫
Ω

ψ(x(t), t)dµ,

where ψ becomes a map of E×Ω in R0
+. For further facts of this see: T a s k o v i ć [2005].

Proof of inequality (74). From the Figures 16 and 17 we have a geometric proof of
(74). Meanwhile, for an analytic proof of inequalityu (74), we set

g(a) = ab− bf−1(0)−
∫ a

0

f(x)dx,

and consider b > 0 as a parametar. Since g′(a) = b − f(a) + f(0), and f is strictly
decreasing, we have

g′(a) > 0 for 0 < a < f−1(b− f(0)),

g′(a) = 0 for a = f−1(b− f(0)), g′(a) < 0

for a > f−1(b− f(0))

and thus, g(a) is a maximum of g for a = f−1(b− f(0)). Therefore, integrating by parts,
we obtain

g
(
f−1(b− f(0))

)
= f(0)f−1(b− f(0))− bf−1(0) +

∫ b−f(0)

f(0)

f−1(y)dy,

i.e., for b = f(0) we have g(a) ≤ g(f−1(0)), and thus calculating we get (74). The proof
is complete.

Figure 16 Figure 17

Further annotations. We notice that Figs. 5 and 6 affirm that inequality (74) is ju-
stified. On the other hand, if we consider the areas by Figs. 5 and 6, then directly for a
strictly decreasing function f in d(ψ) we obtain the following inequality of form

af(a) ≤
∫ a

0

f(x)dx−
∫ b

f(a)

f−1(x)dx,(75)

where f(0) ≥ b and a > 0. Equality holds in (75) if and only if f(0) = b and f(a) = 0.
We notice that inequality (75) is ties with some inequalities in: B o a s-M a r c u s

[1974], M i t r i n o v i ć-P e č a r i ć-F i n k [1993] and Ta s k o v i ć [2001].
Class of d(ψ)-functions. We shall say that a continuous and nonincreasing5 function
ψ : R0

+ → R0
+ in the classe d(ψ) or that is a d(ψ)-function if

ψ(∞) = lim
n→∞

ψ(u) = 0

5Decreasing functions. For the decreasing function ψ : R0
+ → R0

+ holds the following
properties: for every s ≥ 0 there exist the following expression (we set on convention



108 Inequalities of General Convex Functions and Applications

and ψ(0) = b (0 < b ≤ +∞); where in the case b = +∞ we understand a function of the
form that f : R0

+ ∪ {+∞}.
Namely, in the case b = +∞, we can ψ, comprehend and as a restriction on the set R+,

i.e., ψ|R+ → R0
+. The elements of the class d(ψ) we denoted by ψ, ξ, ϕ, . . . and ξ ∈ d(ψ)

is a measurable function. Also, ξ(u) = ξ ◦ u u is a measurable function for the arbitrary
measurable function u : R+ → R0

+

For the function ψ ∈ d(ψ) we defined on the right inverse function ψ∗ : R0
+ → R0

+

in the folowing sense
ψ∗(t) = supψ−1(t, b) = inf ψ1([0, t]),

where 0 < b ≤ +∞. It is easily proved that ψ∗ ∈ d(ψ) and ψ∗∗ = ψ, i.e., ψ∗ is an
idempotent mapping. Precisely, this means that ψ and ψ∗ are reciprocally on the right
inverse functions.

Proposition 13. Let ψ ∈ d(ψ). Then the following characteristic facts hold:
(a) ψ∗(ψ(s)) ≤ s for every s ≥ 0.
(b) t > ψ(s) simplies that is ψ∗(t) < s.

(c) ϕ(s) = aψ(bs) implies ϕ∗(t) =
1

b
ψ∗
(
t

a

)
for a, b > 0.

(d) ψ∗(ψ(s)− ε) ≥ s for everu s > 0 and 0 < ε < ψ(s).

A brief proof of this statement we can to make in the proper manner from book of
M u s i e l a k [1976]. Also see: M a t u s z e w s k a [1961] and Ta s k o v i ć [2005].

Annotation. If ψ ∈ d(ψ) with the values t, then ψ∗(t) = inf ψ−1({t}). Otherwise, if ψ∗

(for ψ ∈ d(ψ)) is a continuous function in the point ψ(s), then, from Proposition 1, the
following equality holds: ψ∗(ψ(s)) = s.

The classe of d(M)-functions. In the further, a function G : R→R0
+ is called an

M-function if there is a function ψ ∈ d(ψ) such that

G(s) =

∫ |s|
0

ψ(t)dt.(76)

By d(M) we shall denote the set of all M -functions. If (76) holds, then we say that
the function G determined by the function ψ.

ψ(−0) = ψ(0)):

ψ−(s) = ψ(s− 0) = lim
h→0+

ψ(s− h) = inf([0, s]) =

inf ψ((t, s)) for 0 ≤ t < s and

ψ+(s) = ψ(s+ 0) = lim
h→0+

ψ(s+ h) = supψ((s,∞)) =

supψ((s, t)) for s < t;

where holds the following inequalities in the forms: ψ+ ≤ ψ ≤ ψ− and ψ−(t) ≤ ψ+(s) for
s < t.

On the other hand, a decreasing function ψ : R0
+ → R0

+ is from the right continuous if
holds the following equality

ψ(supS) = inf ψ(S)

for every nonempty bounded set S ⊂ R0
+. In this sense, if holds and the following equality

in the form (continuity from the left)

ψ(inf S) = supψ(S),

then we say, that the mapping, ψ is continuous. For further facts on the decreasing
mappings see: T a s k o v i ć [2005].
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The value of the M -function, itself is the magnitude of the area of the corresponding
curvilinear trapezoid. If follows from representation (76) that every M-function is even,
thut for s ∈ R0

+ and G ∈ d(M) directly we have the following inequalities

asψ
( s
a

)
< G(s) < sψ(0),(77)

i.e., in an equivalent form,

a2sψ(s) < G(as) < asψ(0)(78)

for s > 0 and for 0 < a ≤ 1. Hence, from the preceding inequalities (77) and (78), directly
calculating, we obtain the following inequalities in the form

ψ−(max{s, t}) ≤ G(s)−G(t)

s− t ≤ ψ+(min{s, t});(79)

and thus, from the preceding facts, we have

G(s) = max
t≥0

{
g(t) + (s− t)ψ=(s)

}
= min

t≥0

{
G(t) + (s− t)ψ+(s)

}
.

Proposition 14. The function f : R → R belongs to the classe d(M) if and only if the
following facts hold: f(x) = 0 if and only if s = 0, f ∈ BC(R0

+)6 f is continuous even,
and

0 ≤ f(∞)

∞ ≤ b =
f(0)

0
(0 < b ≤ +∞)

A brief proof of this statement may be found in: T a s k o v i ć [2005]. As an immediate
application of this result and the preceding facts we have the following inequalities:

G(as) ≥ aG(s) for s ≥ 0 and 0 ≤ a ≤ 1.(80)

G(as) ≤ aG(s) for s ≥ 0 and a ≥ 1.(81)

G(t)

t
<
G(s)

s
for 0 ≤ s < t.(82)

G(s+ t) < G(s) +G(t) for s, t > 0.(83)

We notice that properties of the function G directly to bring about properties hers the
inverse function defined by G−1 = (G|R0

+)−1.
The function G−1, defined in the preceding sense, is continuous, difference is two

convex functions, i.e., G−1 ∈ BC(R0
+), and strictly decreasing on R0

+.
If to make corresponding replacements variables, from inequalities (80)-(83), for the

function G−1 we obtain the following inequalities:

G−1(as) ≤ aG−1(s) for s ≥ 0 and 0 ≤ a ≤ 1.(84)

G−1(as) ≥ aG1(s) for s ≥ 0 and a ≥ 1.(85)
t

G−1(t)
<

S

G−1(s)
for 0 ≤ s < t.(86)

G−1(s+ t) > G−1(s) +G−1(t) for s, t > 0.(87)

We notice that equality holds in (80), (81), (84) and (85) if and only if the point (s, a)
is on edge region in which the preceding inequalities hold.
Complementary M-function. For aM -function hers the complementary function (in
the sense of inequalities (77)) is the function G∗ in the following form:

G∗(t) =

∫ |t|
)

ψ ∗ (s)ds.

6BC(R0
+) denoted the set of all functions which are difference of two convex functions

on R0
+.



110 Inequalities of General Convex Functions and Applications

From the some former facts, complementary mapping is an idempotent mapping of the
classe d(M) into itself. From Proposition 13 we have that

A(s) = aG(bs) implies A∗(s) = aG∗
(
t

ab

)
,

where a, b > 0 are constants.
As an immediate consequence of the former inequality (74) is the following statement.

Theorem 59. Let the function G ∈ d(M). Then for mutually complementary functions
G and G∗ the following inequality holds in the form

(s− ψ−1(0))t ≤ G(s)−G∗(t)

for s, t ≥ 0, where equality holds in this case if and only if ψ(s) = 0.

From the preceding Theorem 59 as an immediate consequenca we have the quasilinear
representation of an arbitrary complementary function in the form

G∗(t) = min
s≥0

(
G(s)− [s− ψ−1(0)]t

)
.(88)

The comparison of M -functions. In the sequel, an essential role will be played by
the rapidity of growth of the values of an M -function as n→∞. In connection with this,
for the function G ∈ d(M) we shall say that before the function R ∈ d(M), in note G ≺ R
or G(s) ≺ R(s), if there exists constant K > 0 such that

G−1(s) ≤ R−1(ks) for enough large s.(89)

Otherwise, we shall say that the M -functions G and R are equivalent in write G ∼ R
or G(s) ∼ R(s) if G ≺ R and R ≺ G, i.e., if there exist constants K, k > 0 such that

R−1(ks) ≤ G−1(s) ≤ R1−(Ks) for enough large s.(90)

We notice that the binar relation ≺ defined a quasiorder in d(M), which means that
∼ is an equivalente relation in d(M) agreed with ∼; but the relation ≤ defined is on the
quotient set d(M)/ ∼= {/G/ : G ∈ d(M)} with

[G] ≤ [R] if and only if G ≺ R,

and she is a partial order relation on d(M)/ ∼. In connection with this, from (80) and
(81), directly calculating we obtain

G−1(smin{a, 1}
)
≤ aG−1(s) ≤ G−1(smax{a, 1}

)
for a > 1 and for s ≥ 0; hence, from the preceding facts, we have G ∼ aG. Since
G(s) ∼ G(bs) for b > 0, thus we obtain

G(s) ∼ aG(bs) for all a, b > 0.

Some annotations. We notice that in (89) we can suppose that there exists constant
K ≥ 1 instead K > 0. Indeed, if holds (89) for s ≥ z and if r < z, then for r ≤ s ≤ z the
following inequality holds

G−1(s) ≤ R−1(K0s), for K0 = max

{
1, sup
r≤s≤z

(
G−1(s)

R−1(s)

)}
;

and thus, for K1 = max{K,K0}, we obtain that is G−1(s) ≤ R−1(K1s) for s ≥ r.
From this, for an arbitrary constant r > 0, we have that fact G ≺ R is an equivalent

with the fact: that there exists constant K ≥ 1 such that

G−1(s) ≤ R−1(Ks) for every s ≥ r.
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In connection with this, also we notice that the fact G ≺ R is equivalent with the fact
that there exist constants K0, K > 0 such that

G−1(s) ≤ K0 +R−1(Ks) for every s ≥ 0.(91)

Indeed, let G−1(s) ≤ R−1(Ks) for every s ≥ 0. Thus we have G−1(s) ≤ K0 +R−1(Ks)
for some K0 > 0, i.e., holds (19). Reversed, if holds (91) and if K0 = R−1(K1) for K1 > 0,
from (87) we have

G−1(s) ≤ R−1(K1) +R−1(Ks) ≤ R−1(K1s) +R−1(Ks) ≤

R−1(K1s+Ks) = R−1((K1 +K)s)

for s ≥ 1. This means that G ≺ R is equivalent with inequality (91).
On the other hand, from properties of M -functions and the order relation ≺, directly

follow that G ≺ R is equivalent with the fact:

inf
b≥1

(
lim
s→∞

sup
G−1(s)

R−1(bs)

)
= 0.

In connection with the preceding partial ordering, let G ≺ R for G,R ∈ d(M) have
the following means: that there exists constant K > 0 such that

G−1(s) ≤ KR−1(s) for enough large s;

and let G ∼ R for G,R ∈ D(M) have the following means G ≺ R ∈ d(M) have the
following means G ≺ R and R ≺ G, i.e., this means that there exist two constants K,
k > 0 such that

kR−1(s) ≤ G−1(s) ≤ KR−1(s) for enough large s.

It is easily seen that ≺ is a quasiorder, till ∼ is an equivalence relation in the d(M)-
class. The fact G ≺ R is equivalent with the fact: that there exist two constants K0,
K > 0 such that

G−1(s) ≤ K0 +KR−1(s) for every s ≥ 0.

The d(∆2)-condition. The following condition in order that an d(M)-class be linear
(i.e., identical with the d(Lψ)-space) is essential.

We say that the M-function G satisfies the d(∆2)-condition for large values of s if
there exists constant K > 0 such that

G−1(2s) ≤ KG−1(s) for enough large s.(92)

IfM -function G satisfies (92) for every s ≥ 0, then we say that G satisfies d(∆2)-condi-
tion for every s ≥ 0. The class of all M -functions which satisfies d(∆2)-condition denoted
by d(M2). In this context, the mappings p∞, q∞ : d(M)→ [0, 1] we define by:

p∞(G) = lim inf
s→∞

sψ(s)

G(s)
and

q∞ = lim sup
s→∞

s
ψ(s)

G(s)
;

for which we have p∞(bG(as)) = p∞(G) and q∞(bG(as)) = q∞(G) for arbitrary para-
metars a, b > 0. Since s 7→ s−rG(s) for s ≥ t is a nonincreasing function if and only
if

sψ(s)

G(s)
≤ r for every s ≥ t,

and since s 7→ s−1G(s) for s ≥ t is a nondecreasing function only if

sψ(s)

G(s)
≥ r for every s ≥ t,
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thus, we obtain directly the following equalities for functions p∞(G) and q∞(G) in the
following forms:

p∞(G) = sup
{
rin(0, 1) : s−1(G(s) increasing for s ≥ t

}
and

q∞(G) = inf
{
r ∈ (0, 1) : s−rG(s) decreasing for s ≥ t

}
.

Otherwise, from the preceding facts and geometric reasons we can considered the map-
pings L∞(G), Z∞(G) : d(M)→ [1,∞) defined by

L∞ = lim inf
s→∞

sψ(0)

G(s)
, and

Z∞ = lim sup
s→∞

sψ(0)

G(s)
;

for which, also, L∞(bG(as)) = L(G) and Z∞(bG(as)) = Z∞(G) for arbitrary parameters
a, b > 0. Also, the mappings p, q : d(M)→ [0, 1] we define by:

p(G) = inf
s>0

sψ(s)

G(s)
, and

q(G) = sup
s>0

sψ(s)

G(s)
;

and thus holds: 1 ≤ L(G) ≤ L∞(G) ≤ Z∞(G) ≤ Z(G). Also, for the preceding mapping
shold and many other properties, see: T a s k o v i ć [2005].
Annotations. From the preceding considers we see that for further work can be essential
the following condition: there exists a constant K > 0 such that

G
( s

2

)
≤ KG(s) for enough large s.

Also, from the preceding considers and the properties of the p and q functions, for an
arbitrary function G ∈ d(M) holds the following inequalities:

1

q
sψ(s) ≤ G(s) ≤ 1

p
sψ(s),(93)

min
{
ap, aq

}
G(s) ≤ G(as) ≤ max

{
ap, aq

}
G(s),(94)

G
(

min
{
a1/p, a1/q}s) ≤ aG(s) ≤ G

(
max

{
a1/p, a1/q}s)(95)

p

q
min

{
ap−1, aq−1} ≤ ψ(as)

ψ(s)
≤ q

p
max

{
ap−1, aq−1}(96)

The functions ρG. Let S be a closed interval on real line andM =M(S, µ) is a set of
all extension real mu-measurable, functions on S. For an M -function G we define on the
quotient set A =M/ ≡ the function ρG : A→ R∗ := R ∪ {±∞} with

ρG(x) =

∫
S

G(x(s))ds,

at to what ρG∗ (or ρ∗G) suitable the complementary function. This definition is correct
because

x ≡ y implies ρG(x) = ρG(y);(97)

and, from the fact that G is an even function arise that ρG is even, i.e., ρG(|x|) = ρ(x).
Also, ρG(u) = 0 if and only if u equiv 0, and

inf{u, v} ≡ 0 implies ρG(u+ v) = ρG(u) + ρG(v);(98)

and, u ≤ v implies ρG(u) ≤ ρG(v), and

ρG(au+ bv) ≤ aρG(u)(u) + bρG(v) for a, b ≥ 1;
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at tho what for the function G ∈ d(M) holds the following inequality[
u(v − ψ−1(0))

]
ds ≤ ρG(u)− ρ∗G(u).

It follows from this inequality and from Levi’s theorem that holds quasilinear repre-
sentation in the following form:

ρG(u) = sup
ρ∗
G

(v)<∞

(∫ [
u(v − ψ−1(0))

]
ds+ ρ∗G(v)

)
.

We set H = {s ∈ S : u(s) ≥ v(s)} and H1 = SH. Then we have sup{u, v} =
uχH + vχH1 , and thus from (98) we obtain ρG(sup{u, v}) ≤ ρG(u) + ρG(v), i.e., by
induction, for n ∈ N , the following inequality holds:

ρG
(

sup{u1, . . . , un}
)
≤ ρG(u1) + · · ·+ ρG(un).

We notice that some properties of the M -functions have influence and on the some
properties of ρG functions. In this sense hold the following facts:

(a) The fact G ≺ R is equivalent with the fact: that there exist constants K0, K > 0,
such that holds the following inequality

ρG−1(u) ≤ K0 +KρR−1(u) for every u ∈ A+∗,
where A+ is positive order cine with the ordering ≤ in A, i.e, A+ = {|u| ∈ A : [u] ≥ [0]}.

(b) The fact G ≺ R is equivalent with the fact: that there exist constants K0, K > 0
such that holds the following inequality

ρG−1(u) ≤ K0 + ρR−1(Ku) for every u ∈ A+.(99)

Proof. Let G ≺ R. If in inequality (91) put u(s) in the place s and afterwards take the
intergral over S, directly we obtain

ρG−1(u) ≤ K0µ(S) + ρR−1(Ku),

i.e., (99) holds. Reversed, to serve for the formula ρG−1(bχH) = G−1(b)µ(H) for b ∈ H
and H ⊂ S, from (99) for u = ut = tχS (t ≥ 0), we obtain

G−1(t) ≤ K0

µ(S)
+R−1(Kt),

whence, again from inequality (91), arise the fact G ≺ R. The proof is complete. �

Boundness of set on ρG. The set X ⊂ A is called the G-bounded iff sup ρG(C) <
+∞. In this sense holds the following statement.

Theorem 60. Let holds the preceding designate. Then the following are mutually equiv-
alent facts:

(a) G ≺ R.
(b) ρ−1

R (R0
+) ⊂ ρ−1

G (R0
+).

(c) sup ρG((ρ−1
G ([0, a])) < +∞ for some a > 0.

(d) Every R-bounded set is G-bounded.

For the proof of this statement we utilize Levi’s theorem and some properties of G and
ρG functions.

We set d(L∗G(S)) = d(L∗G) = {x ∈ A : ρG(x) < +∞}. If utilize only linearity of the
space L, we can further consider structure of d(L∗G) as a subset of linear space L. In this
sense, we set

d(LG(S)) = d(LG) =
{
x ∈ A : ax ∈ d(L∗G) for somea > 0

}
,

and d(L+
G) = {u ∈ d(LG) : u ≥ 0}. For the linear space d(LG) we say that determinate

with the M -function G. Then hold the following facts: d(L∗G) ⊂ L = L1(S), d(LG) ⊂ L,
and:
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(a) d(L∗R) ⊂ d(L∗G) if and only if G ≺ R.
(b) d(LF ) ⊂ d(LG) if and only if G ≺ R.
From this facts arise that the inequalities hold d(L∗G) ⊂ d(L∗R) and d(LG) ⊂ d(LR) if

and only if G ∼ R and G ∼ R, respectively.
This facts exhibit that all functions of one sim - class determined only one linear space

d(LG), where the mapping of [G] and d(LG) is bijective. If in the set

D =
{
d(LG) : G ∈ d(M)

}
defined the order relation with "subset", then from the preceding facts the sets (D,⊂)
and (d(M)/ ∼,≤) are antimorphisms. In this sense, the mapping U : [G] → d(LG) is
antimorphism, and (D,⊂) is a lattice.

In connection with the former facts, for the function G ∈ d(M) we define, first, an
upper norm, in denoted || · || : d(LG)→ R0

+ by

||x||(G) = inf
{
a > 0 : ρG

(x
a

)
≤ 1
}

;

and, then we can broaden this norm to a limitid upper norm as a function, denoted this
extension by || · ||∗(G). In this sense, a hers quasilinear representation is in the following
form:

||x||∗(G) = sup
ρ∗
G

(v)<∞

(∫
u(v − ψ−1(0))ds

1− ρ∗(G)(v)

)
.

Theorem 61. If the mapping T : A→ A satisfy for every s ∈ A and for every a ∈ R the
following conditions: |T (ax)| = |a||Tx| and

ρG−1(Tx) ≤ K0 + ρR−1(Kx),

where K > 0 and K0 ≥ 0 are constants, then for every s ∈ A holds the following inequality
in the form

||x||∗(G−1) ≤ K(K0 + 1)||x||∗(R−1).(100)

Proof. Since T (0) = 0, we have that (100) holds for ||x||∗(R−1) = 0. This inequality holds
and for ||x||∗(R−1) = +∞. We set 0 < a = ||x||∗(R−1) < +∞. Then we have

ρG−1

(
Tx

(K0 + 1)Ka

)
≤ 1

K0 + 1
ρG−1

(
Tx

Ka

)
=

=
1

K0 + 1
ρG−1

(
T
( x

Ka

))
≤ 1

K0 + 1

[
K0 + ρR−1

(x
a

)]
≤ 1,

whence, from definition of norm || · ||∗(G−1), we obtain the inequality in the form (100).
The proof is complete. �

Theorem 62. The fact G ≺ R is equivalent with the fact: that there exists a constant
K > 0 such that holds the following inequality in the form

||x||∗(G−1) ≤ K||x||
∗
(R−1) for every x ∈ A.(101)

Proof. If G ≺ R, then from (99) and Theorem 61 for Tx = x we obtain inequality (101).
Reversed, let (101) holds. Since ||x||∗(G−1) < +∞ infty if and only if x ∈ d(LG−1), from
(101) arise d(LR) ⊂ d(LG−1); and thus G ≺ R from a former fact. The proof is comple-
te. �

Applying Theorem 62, and from some former facts, directly we obtain the following
statements:
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(a) If G ≺ R, then d(LR−1) ⊂ d(LG−1) and there exists a constant K > 0 such that
holds the following inequality in the form:

||x||∗(G−1) ≤ K||x||
∗
(R−1) for every x ∈ d(LR−1).(102)

(b) If G ∼ R, then d(LG−1) = d(LG−1) and there exist constants K0, K > 0 such that
for every x ∈ d(LR−1) hold the following inequalities in the form

K0||x||∗(R−1) ≤ ||x||
∗
(G−1) ≤ K||x||

∗
(R−1).(103)

Annotation. We notice that topology on d(L(R−1)) is redefined of they which make
topology in d(L(G−1)). This means that the order relation in the class of M -functions
have and algebric and topological consequences.

>From inequality (102) arise that the operator T : d(LR−1) → d(LG−1) defined by
Tx = x is continuous.

On the other hand, inequality (103) demonstrate that the equivalent M -functions
determined linear homeomorphic spaces, where the identical mapping is a linear homeo-
morphism.

In connection with this, we define the following two norms. For an M -function G we
define the extension limitid upper norm || · ||∗G : A→ [0,+∞] by

||u||∗G = inf

{∫
u

u(v − ψ−1(0))ds : ||v||(G) ≤ 1

}
for u ∈ A+ and ||x||∗G = ‖|x|‖∗G for x ∈ A. On the other hand, for an M -function G we
define and the extension limited upper norm || · ||∗d(G) : A→ [0,+∞] by

||u||∗d(G) = inf

{∫
u(v − ψ−1(0))ds

1 + ρG(v)
: ρG(v) < +∞

}
for a ∈ A∗ and ||x||∗d(G) = |||x|||∗d(G) for x ∈ A. For the preceding two norms hold the
following inequalities

||u||∗d(G) ≤ ||u||∗G ≤ D||u||∗d(G).(104)

From inequalities (104) arise ||x||∗G < +∞ if and only if x ∈ d(LG). In the preceding
context, for an M -function G we define the norm || · ||0G : A→ [0,+∞] by

||u||0G = sup

{∫
u(v − ψ−1(0))ds : ||v||(G∗)l

1

2

}
for u ∈ A+ and ||x||0G = ‖|x|‖0G for x ∈ A. Also, a limited upper norm || · ||0d(G) : A →
[0,+∞] we define by

||u||∗d(G) = sup

{∫
u(v − ψ−1(0))ds

1− ρ∗G
: ρ∗G(v) <

1

2

}
for x ∈ A+ and ||x||0d(G) = ‖|x|‖0d(G) for x ∈ A. For this two norms hold the following
inequalities in the form

1

2
||u||0d(G) ≤ ||u||0G ≤ ||u||0d(G).

Annotation. In connection with the preceding spaces we can to speak on ordinary con-
vergence in the sense that limn→∞ xn(s) = x(s) for xn, x ∈ A (n ∈ N); and we can to
speak on convergence in middle (of index G) in the sense that

xn →G x if and onli if ρG(xn − x)→ 0;

or we can to speak on convergence in the space d(LG) as an convergence via norms in a
given spaces.
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An inequality. Let G be a M-function and we set p = p(G) and q = q(G). Then holds
the following inequality

||u(λs)||(G) ≤ max
{
λ−1/p, λ−1/q}||u(s)||(G)

for every u ∈ d(LG([0,+∞))) and for arbitrary fixed 0 ≤ λ < +∞. (For the proof of this
inequality, from (95) see: T a s k o v i ć [2005]).
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